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Supplementary Material

A. Additional Visualization of Limitations in
Existing Methods

Fig.A illustrates the correction of foot contacts which is em-
ployed in existing methods[1, 14, 20] as a post-processing
step. The raw outputs from these methods often suffer from
issues such as floor penetration or foot skating, prompting
the use of heuristic post-processing. In the correction of foot
contacts scheme, they extract foot contact information from
the content motion, use this data to adjust the positions of
the feet, and apply inverse kinematics for output motion rec-
tification. In contrast, our method generates plausible mo-
tion without using any heuristic post-processing.

Fig.B illustrates representative failure cases of existing
methods, complementing Fig.1. In Fig.B (a), we observe
the corruption of the generated motion due to a lack of clear
disentanglement between style and content. The resulting
motion fails to preserve the content and struggles to express
style effectively. Furthermore, in Fig.B (b), we examine the
result from Wen et al. [28], which encounters difficulties in
expressing style. The method by Wen et al. [28] faces limi-
tations, especially in handling short videos, attributed to its
reliance on several front frames as a seed. As demonstrated
in both Fig. B (a) and (b), our method consistently produces
well-stylized and plausible outputs.

B. Details of Motion Representation
In this section, we explain more details about the motion
representation in Sec. 3.2. mj

t represents j-th joint vector at
t-th frame. The joint vector is represented by mj

t = [ojt ; q
j
t ],

where ojt ∈ R3 indicates the 3-dimensional vector of each
joint from the root joint and qjt ∈ R4 indicates joint rotation
expressed by a unit quaternion. qjt is based on the world axis
set with the anterior direction of the body. The global joint
vector of t-th frame is represented as mroot

t = [oroott ; qroott ],
where oroott and qroott indicate the position of the root joint
and the global rotation, respectively. A global velocity vec-
tor vt = [óroott ; at] is additionally used for the global motion
following [20] and [28], where óroott ∈ R3 and aroott ∈ R
denotes a positional velocity and an angular velocity of the
root joint, respectively.

C. Details of Adopted Loss
We provide details of adopted losses from existing methods
in this section. Adversarial loss [1, 20] is written as

Ladv = EMS∼M [log(D(MS))] (21)

+ EMC ,MS∼M [log(1−D(MG))].
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Figure A. Post-processing in existing methods. (a) The ’Depressed
Jump’ motions generated by Park et al. [20]. In the output mo-
tion sequence of the model, the body penetrates the floor. Post-
processing is applied to force correction and make contact with
the ground. (b) The ‘Angry Punch’ motion generated by Motion-
Puzzle [14] network contains feet movement. Post-processing is
employed to enforce the fixity of the feet

Reconstruction loss [1, 20] is written as

Lrecon = EMC∼M ||MoST(MC ,MC)−MC ||2. (22)
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Figure B. Representative failure cases in existing methods: (a) A result from Park et al. [20] shows corrupted motion, with the generated
animation depicting the leg swinging in mid-air and the arms losing movement. (b) A result from Wen et al. [28] exhibits issues in
expressing style. For a clearer visualization, please refer to the attached video.

Cycle consistency loss [14] is written as

Lcyc = Lcyc-s + Lcyc-c, (23)

Lcyc-s = EMC ,MS∼M || MoST(MS ,MG)−MS ||2, (24)

Lcyc-c = EMC ,MS∼M || MoST(MG,MC)−MC ||2, (25)

MG = MoST(MC ,MS), (26)

Inspired by [23], we introduce velocity and acceleration
regularization in Eq.(18) for the generated motion MG as

Rvel =
1

T − 1

T−1∑
t=1

 J∑
j=1

|| ˙̂mj
t ||2 + || ˙̂mroot

t ||2

 , (27)

Racc =
1

T − 2

T−2∑
t=1

 J∑
j=1

|| ¨̂mj
t ||2 + ||v̂t+1 − v̂t||2

 ,

where ˙̂mj
t = m̂j

t+1 − m̂j
t , ˙̂mroot

t = m̂root
t+1 − m̂root

t and
¨̂mj
t =

˙̂mj
t+1 − ˙̂mj

t .

D. Details of Proposed Loss

Fig. C illustrates the proposed style disentanglement loss
(LD). We generate motions from two different style mo-
tions with identical style labels but different content la-
bels. LD makes both generated motions similar. For more
stable training, we halt back propagation for the path to
MoST(MC ,MS

b ).

E. Details of Evaluation Metrics

In this section, we provide equations of evaluation metrics
in Sec. 4. We evaluate MG which is generated from a mo-
tion pair of MC and MS drawn from the test dataset. lCC

and lSC denote the content label and style label of MC , re-
spectively. lCS and lSS denote the content label and style
label of MS , respectively. lCT and lST denote the content
label and style label of a ground truth motion sequence MT



Figure C. Illustration explaining the proposed style disentanglement loss (LD)

Table C. Ablation study of replacing E , G, and D with the different network architectures proposed by [1] and [20]. Applied components
are labeled as ◦. Note that the original method by Park et al. [20] utilizes a style label, whereas our method does not.

Networks of E , G, D Style Label Siamese Encoder PSM LD CC ↓ SC++ ↓
Aberman et al. [1] Temporal-CNN × × × × 46.0 189.7
OURS Temporal-CNN × × × ◦ 39.6 81.2

Park et al. [20] GCN ◦ × × × 38.4 65.7
OURS GCN × × ◦ ◦ 25.1 68.5

OURS (MoST) Transformer × ◦ ◦ ◦ 8.5 63.0

in a training sample, respectively. Metrics are written as

CC = EMC ,MS∼{mtest|lSC=lSS }||MG −MC ||2, (28)

SC = EMC ,MS∼{mtest|lCC=lCS }||MG −MS ||2, (29)

SC++ = EMC ,MS∼{mtest}(
EMT∼{m|lCT =lCC , lST =lSS }||MG −MT ||2

)
,

where mtest denotes a random variable of motion data in
the test set. m denotes a random variable of motion data
in the training set. The global translation is excluded when
calculating the metric for a fair comparison.

F. Ablation Study in Architectures
In Table C, we conduct an experiment by replacing the
proposed transformer architecture in the encoder, genera-
tor, and discriminator with other architectures. Specifically,
we employ temporal-CNN and GCN architectures, sourced
from the methods of Aberman et al. [1] and Park et al. [20],
respectively. In both architectures, our proposed compo-
nents couldn’t be entirely implemented due to their struc-
tural limitations. The temporal-CNN [1] and GCN [20] ar-
chitectures lack the capability to extract both style and con-
tent features within a single network. Consequently, we
constructed separate content encoders (C) and style en-
coders (S). Additionally, obtaining part-specific features

from the temporal-CNN [1] was not feasible. As a result,
PSM couldn’t be utilized in this case. Nevertheless, both
new losses were applied.

Each network benefited from our overall framework
and loss functions, surpassing the individual performances
of the original methods listed in Table 1. Notably, the
temporal-CNN achieved significantly lower values in both
CC and SC++ . Importantly, our proposed transformer archi-
tecture demonstrated superior performance compared to the
other two networks.

G. Evaluation Across Motion Categories

Table D and Table E present the CC and SC++ in each con-
tent and style category. Regarding content, ’Run’ and ’Kick’
are proven to be challenging to retain. For style, ’Proud,’
’Angry,’ and ’Childlike’ are proven to be difficult to express.

H. Additional Results in BFA dataset

Fig. F illustrates the additional results on BFA dataset [1].
Our method effectively performs style transfer even when
complex motions are mixed within a motion clip. The fig-
ure demonstrates a clear differentiation of styles in the gen-
erated motions when different styles are transferred. In ad-
dition, our method achieves robust transfer between two in-
puts with different contents.



Table D. Content consistency (CC) in each content category and in each style category on Xia dataset [30].

Methods
Content categories of content motion Style categories of style motion
walk run jump kick punch neutral angry childlike depressed old proud sexy strutting average

MotionPuzzle [14] 37.0 50.5 68.8 63.7 65.9 51.9 57.9 56.4 49.9 42.4 59.3 52.0 41.8 51.4
Aberman et al. [1] 29.3 38.5 40.3 66.2 55.7 42.2 51.9 59.3 34.4 34.1 67.2 39.8 39.2 46.0
Park et al. [20] 34.1 46.2 44.0 41.4 35.0 35.7 41.2 46.5 32.4 33.9 50.7 35.8 31.2 38.4
Wen et al. [28] 14.0 17.6 31.1 20.0 18.8 18.5 9.6 19.9 19.4 17.6 23.5 21.7 16.7 18.5
MoST 8.1 9.6 8.2 9.7 7.9 6.9 9.9 7.5 7.5 10.1 10.4 7.6 8.5 8.5

Table E. Style consistency++ (SC++ ) in each content category and in each style category on Xia dataset [30].

Methods
Content categories of content motion Style categories of style motion
walk run jump kick punch neutral angry childlike depressed old proud sexy strutting average

MotionPuzzle [14] 69.6 78.2 89.4 77.9 77.5 71.5 84.2 79.3 72.4 65.2 92.3 74.8 68.1 76.0
Aberman et al. [1] 258.9 237.1 115.0 112.8 85.9 185.1 174.0 209.9 181.3 182.2 196.9 195.3 192.5 189.7
Park et al. [20] 65.2 77.9 64.8 68.3 53.3 59.2 66.5 70.5 59.8 62.0 81.1 62.4 64.2 65.7
Wen et al. [28] 72.7 87.5 97.4 97.5 65.0 71.1 79.5 84.5 77.2 83.8 87.2 78.6 84.5 80.8
MoST 61.6 75.4 60.5 68.1 51.9 55.1 67.5 63.8 58.8 59.9 75.5 62.8 60.2 63.0

I. Generation of Global Translation

Fig.D displays the global translation generated by our
method. The figure illustrates the variation in motion speeds
for different styles produced by our method. The upper mo-
tion is ’Childlike Walk,’ while the lower motion is ’Old
Walk.’ The global translation of ’Old Walk’ is generated at
a slower speed. It is worth noting that Aberman et al. [1]
utilized a heuristic post-processing technique called global
velocity warping to diversify motion speeds between styles.

Figure D. Generated global translation reflecting styles. (Top)
‘Childlike Walk’ generated from ‘Neutral Walk’ (MC ) and
‘Childlike Kick’ (MS). (Bottom) ‘Old Walk’ generated from
‘Neutral Walk’ (MC ) and ‘Old Kick’ (MS).

J. Failure Cases of MoST

In Fig.E, we present the failure cases observed in our re-
sults. As shown in Fig.E (a), style transfer was relatively
less successful for the content motion featuring intricate
motion, such as ‘Drunk.’ In the generated motion, while
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Figure E. Failure cases obtained in our method. (a) Less success-
ful style transfer for the intricate content motion. (b) Foot skating
observed in the generated motion of ‘Proud Kick.’

the staggering appearance decreased, ‘Angry’ was not ex-
pressed perfectly. Fig. E (b) illustrates foot skating observed
in the generated motion.
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Figure F. Qualitative results in the BFA [1] dataset. The BFA dataset comprises long motion sequences not segmented by contents. There-
fore, we label only the style categories at the upper side of each motion clip. Each generated motion successfully reflects the desired styles,
as highlighted in the motion segments indicated by the red arrows. (a) The character straightens its arms and opens its chest in the ‘Happy’
style, whereas it bends its back and arms in the ‘Old’ style. (b) The character walks staggering with arms extended forward in the ‘Zombie’
style, and the ‘Heavy’ style expresses the weight when pressing down on the ground. (c) The ‘Drunk’ style expresses staggering motion,
while the character in the ‘Strutting’ style opens its chest and arms. For clearer visualization, please refer to the attached video.


