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Supplementary Material

In this document, we provide more details about our
method, which is presented in the main paper, as well as
additional experimental results.

1. Finding Interaction Points
Here, we describe an approach used for identifying inter-
action points between mesh faces of different objects. Ini-
tially, we sample points from mesh faces uniformly and cal-
culate the distances between these sampled points across
the mesh faces of different objects. Note that a pair of mesh
faces can have multiple pairs of sampled points, given that
each mesh face can keep multiple sampled points. Interac-
tion point pairs are identified when the distance between
sampled points on different faces falls below a specified
threshold. Subsequently, any pair of mesh faces contain-
ing at least one interaction point pair is considered to have
a distance approximately within the threshold. Note that
our proposed Relational PointConv, designed for processing
mesh data directly, is also compatible with other approaches
for identifying closely positioned mesh faces, such as the
Bounding Volume Hierarchy algorithm used in [1].

2. Speed Comparison
We ran SGNN’s [4] and our inference code with the same
point cloud input on the same machine with RTX 3090. Av-
eraging across the Physion scene types, our inference code
ran 17.10 fps while SGNN’s code ran 38.9 fps. The SGNN
code is built based on the DPI code, so we expect DPI to run
at a similar speed. Our implementation is still fast, given
DPI and SGNN are shallow networks with only two layers
of hierarchy.

3. Point Cloud Generation
For both datasets, ground truth meshes are available. Hence,
we uniformly sample points from the mesh faces to obtain
a point cloud dense on object surfaces. Then, we employ an
initial grid sampling step with a voxel size of 0.05 for Phy-
sion and 0.2 for Kubric. This process subsamples the point
cloud with one point per voxel. Afterward, within the U-
Net architecture, we utilize different voxel sizes for down-
sampling at different levels. For Physion, we employ voxel
sizes of 0.075, 0.1125, and 0.16875 at different downsam-
pling levels. For Kubric, we use voxel sizes of 0.3, 0.45,
and 0.675 at different downsampling levels.

For the distance threshold r used in KNN for relational
PointConv, we select 0.1 as the threshold at the highest res-

olution in U-Net for Physion. Subsequently, for the down-
sampling levels, we employ thresholds of 0.15, 0.225, and
0.3375. Regarding Kubric, we utilize a threshold of 0.4 at
the highest resolution, with thresholds of 0.6, 0.9, and 1.35
for the downsampling levels.

4. Mesh Preprocessing
We use the Kubric dataset for our mesh experiments. Since
the original meshes in the Kubric dataset come with too
many vertices, we first perform mesh simplification via ver-
tex clustering with a voxel size of 0.2 and 0.4 for Movi-A
and Movi-C, respectively. For the downsampling layers in
the U-Net architecture, we adopt the mesh simplification
method proposed in [3] instead of the grid downsampling
used for point clouds.

5. Interaction PointConv U-Net for Mesh
We used a variant of the PointConv U-Net architecture
shown in Fig. 1 for our mesh experiments. This choice was
made because applying relational PointConv to downsam-
pled meshes may result in inaccurate face-to-face collision
modeling unless the downsampling process accurately pre-
serves the shapes of object surfaces.

6. Training details
We utilized the Adam optimizer with an initial learning rate
of 0.001 and trained the model for 30 epochs for the Phys-
ion dataset. For the Kubric dataset, we employed an initial
learning rate of 0.005 and trained the model for 15 epochs.
During each training iteration, a single input frame was ran-
domly selected from each training video. We defined one
epoch as the point when every video in the training dataset
is sampled N times for input frames. In the case of Physion,
we set N to 8, consistent with previous studies [2, 4], while
for Kubric, we set N to 2.

7. Additional Ablation Results
In this section, we present results from additional ablation
experiments that we conduct with acceleration prediction
models. In Table 1, we compare the performance using
different numbers of interaction blocks used in the U-Net.
For this experiment, we use the same number of interaction
blocks in the encoder, bottleneck, and decoder of U-Net for
simplicity, but note that a different number of blocks can be
used for the bottleneck in practice depending on the needs



Relational PointConv

Object PointConv

Object PointConv 
with Interpolation

Mesh Simplification

Mesh Predictions

Encoder Bottleneck Decoder

C 2C 4C 8C 4C 2C

Figure 1. The proposed U-Net architecture for mesh inputs. Unlike its counterpart designed for dense point cloud inputs, we only utilize
relational PointConv at the highest resolutions, as some object shapes might not be accurately represented with fewer mesh vertices. In this
U-net architecture, the downsampling layers only have object PointConv that propagates collision effects over the mesh vertices of each
object.

Dominoes Contain Link Support Drop Collide Roll Average

3 blocks (1 encoding, 1 bottleneck, 1 decoding) 90.2± 1.1 72.2± 3.6 73.1± 4.1 83.3± 0.9 85.8± 2.2 91.1± 1.4 87.5± 0.3 83.3
6 blocks (2 encoding, 2 bottleneck, 2 decoding) 88.7± 1.6 75.8± 1.7 74.2± 0.8 83.8± 1.7 87.4± 0.9 91.6± 0.6 87.3± 0.0 84.1
9 blocks (3 encoding, 3 bottleneck, 3 decoding) 90.2± 1.3 75.1± 2.1 75.3± 1.9 83.6± 3.5 88.0± 0.9 90.9± 0.8 87.5± 0.3 84.4

Table 1. Ablation on different numbers of interaction blocks on the Physion dataset with the contact prediction accuracy (%)

Dominoes Contain Link Support Drop Collide Roll Average

DPI [5] 82.3± 1.3 72.3± 1.8 63.7± 2.2 64.8± 2.0 70.7± 0.8 84.4± 0.7 82.3± 0.6 74.4

PointConv U-Net w/o object-centric PointConv 88.2± 0.3 71.8± 3.5 70.0± 4.3 82.4± 2.5 82.7± 1.5 90.9± 0.3 87.8± 0.3 82.0
PointConv U-Net 90.2± 1.3 75.1± 2.1 75.3± 1.9 83.6± 3.5 88.0± 0.9 90.9± 0.8 87.5± 0.3 84.4

Table 2. Ablation on the interaction block design that creates the separation between object and relational PointConv

(e.g., more interaction blocks if longer-range force propa-
gation needs to be modeled). The result with 3 blocks cor-
responds to the scenario where a single downsampling and
upsampling step is employed. One can see that results for
most scenarios in the Physion dataset do not change signif-
icantly with further downsampling.

In Table 2, we compare our approach with an alternative
where the entire point cloud is directly processed without
separate object and relational PointConv layers. Note that
this baseline requires an expensive KNN neighbor search
every frame across all PointConv layers, whereas the neigh-
bor search needs to be done only once when the object
PointConv layers are used for rigid body objects. Results in
Table 2 show that the non-object-centric baseline can still
perform well, especially for scenes such as Roll and Col-
lide, where objects are well separated. This result makes
sense, as when objects are well separated most of the time,
the KNN neighbors generally come from the same object
except for a few collision events. Also, note that our non-
object-centric baseline generally performs better than other
non-object-centric baselines such as DPI [5].
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