
Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization
Supplementary Material

A. Implementation Details
A.1. Our model variants

The default number of blocks of NAFNet [6] is 36 which consists of encoder blocks {1, 1, 1, 28}, middle block {1} and de-
coder blocks {1, 1, 1, 28}. NAFNet with 32 widths and 64 widths are referred to as NAFNet-32 and NAFNet-64, respectively.
To be consistent with the computational cost of NAFNet, we build SegDeblur-S (14.44 GMACs) and SegDeblur-L (62.68
GMACs) for the realistic datasets such as RealBlur [27], RSBlur [28] and ReLoBlur [20]. Since FFTFormer [15] shows the
best performance on GoPro [25], we build SegFFTFormer (135.81 GMACs) for GoPro. Our discrete-to-continuous (D2C)
converter of SegDeblur-S is based on NAFNet and consists of encoder blocks {8, 8, 8, 22}, middle block {8} and decoder
blocks {8, 8, 8, 8} with 16 widths (10.07 GMACs). Also, our D2C converter of SegDeblur-L is also based on NAFNet and
consists of encoder blocks {5, 5, 5, 18}, middle block {5} and decoder blocks {5, 5, 5, 5} with 48 widths (58.31 GMACs).
For SegFFTFormer, we use the original FFTFormer (131.45 GMACs) for our D2C converter. On the other hand, our blur
pixel discretizer is based on NAFNet and shared with our SegDeblur-S, SegDeblur-L and SegFFTFormer, which consists
of encoder blocks {2, 2, 2, 20}, middle block {2} and decoder blocks {2, 2, 2, 2} with 16 widths (4.37 GMACs). For our
kernel estimator, we use U-Net [29] with 16 widths (1.16 GMACs), which performs four times of downsampling by stride
2 operations. We remark that our kernel estimator is only used for training, such that it is not included in our computational
cost. Overall, our models are summarized in Table A.1.

Our Model Model (GMACs) Total GMACs Total # Params (M)Blur Pixel Discretizer D2C Converter
SegDeblur-S 4.37 10.07 14.44 12.30
SegDeblur-L 4.37 58.31 62.68 55.40

SegFFTFormer 4.37 131.45 135.81 20.60

Table A.1. Our model variants. We present a detailed description of our individual variants.

B. Additional Ablation Study
B.1. Effects on deblurring network architecture

We investigate that our blur segmentation map still works well on the other network architectures. To confirm this, we
apply our blur segmentation map to the network architectures such as NAFNet [6], FFTFormer [15] and FMIMOUNet [24].
We train the deblurring model with RealBlur-J [27]. Note that the network architectures such as NAFNet, FFTFormer and
FMIMOUNet are scaled down to around 16 GMACs. The results are given in Table B.1.

Prior RealBlur-J
PSNR ↑ SSIM ↑

NAFNet [6] 31.99 0.920
✓ 32.53 0.927

FFTFormer [15] 32.08 0.917
✓ 32.73 0.926

FMIMOUNet [24] 31.25 0.903
✓ 32.30 0.920

Table B.1. Ablation study on network architectures. [6, 15, 24]. All network architectures are based on 16 GMACs.

B.2. Effects on model size

Our model consists of blur pixel discretizer and D2C converter. Here, we raise a fundamental question: which model size
should we increase to improve performance? To address this, we conduct experiments with various model sizes by scaling
the size of blur pixel discretizer and D2C converter. The results are shown in Table B.2. We observe that the small model



size of the blur pixel discretizer is sufficient to provide high deblurring performance (compare the performance in 1st-3rd
row results and 2nd-4th row results). This is because the classification task (e.g., blur pixel discretization) is easier than
the regression task (e.g., discrete-to-continuous conversion). Meanwhile, the model size of the D2C converter is the most
important ingredient to improve performance as shown in Table B.2.

MACs (G) PSNR SSIMBlur Pixel Discretizer D2C converter Total
4.37 10.07 14.44 32.53 0.927
4.37 58.31 62.68 32.95 0.934
10.07 4.37 14.44 32.18 0.919
58.31 4.37 62.68 32.65 0.923

Table B.2. Ablation study on model sizes of our method. We make several combinations of our blur pixel discretizer and D2C converter to
evaluate which model type contributes to more performance improvement when varying the size of each model.

B.3. Cross-data validation

To verify the generalization ability, we conduct the cross-data test. Namely, we train with RealBlur-J [27] and evaluate on
RSBlur [28]. As reported in Table B.3, our SegDeblur-L gives better performance than NAFNet [6] at similar computational
cost. Although the performance gap (0.2 dB) seems small, this performance gap may require 4× increase in computational
cost in RSBlur, as demonstrated in Table 4.

Methods GMACs RealBlur (Train) - RSBlur (Test)
PSNR ↑ SSIM ↑

NAFNet [32] 63.64 30.56 0.806
UFPNet [11] 243.33 30.75 0.812

SegDeblur-L (ours) 62.68 30.76 0.813
Table B.3. Ablation study on the cross-data validation. We train with RealBlur-J [27] and evaluate on RSBlur [28] The best results are
indicated in bold.

B.4. Different datasets for blur pixel discretizer and D2C converter

To confirm how different datasets affect the performance, we conduct experiments in which we use the blur pixel discretizers
trained with RealBlur-J [27], RSBlur [28] and GoPro [25] and train the D2C converter with RealBlur-J. The results are
presented in Table B.4. The results show that it is crucial to use the same data in both blur pixel discretizer and D2C
converter. On the other hand, using the different datasets leads to significant performance drop as shown in Table B.4. We
believe that this is due to vulnerability to unseen data in deep models as well as variations arising from different image
sensors, lenses, ISPs and motion types.

Training Set PSNR ↑ SSIM ↑Blur Pixel Discretizer D2C Converter
GoPro [25]

RealBlur-J
31.89 0.919

RSBlur [25] 31.93 0.921
RealBlur-J [27] 32.53 0.927

Table B.4. Ablation study on different datasets. To confirm the effect on different datasets for two models, we train with GoPro [25],
RSBlur [28] and RealBlur-J [27] for our blur pixel discretizer and train with RealBlur-J for our D2C converter. The best results are
indicated in bold.

B.5. Performance of large motion test set in RSBlur

As shown in Table 1, we demonstrate that our method is robust to large motion test set in RealBlur-J [27]. To additionally
verify the robustness of large motion scenarios for our method, we construct the large motion test set of RSBlur [28] by
extracting the largest motion 300 image pairs. The results are presented in Table B.5. Our efficient model, i.e., SegDeblur-S,
improves PSNR in the large motion set (30.04 → 30.39 dB) compared with the counterpart, NAFNet-32. Furthermore, its
large motion performance is also comparable to that of the larger model, NAFNet-64 (30.39 dB).



Methods GMACs RSBlur
Total Large

NAFNet-32 [6] 16.25 33.71 30.04
NAFNet-64 [6] 63.64 33.97 30.39

SegDeblur-S (ours) 14.44 33.96 30.39
SegDeblur-L (ours) 62.68 34.21 30.82

Table B.5. Performance of large motion test set in RSBlur [28]. “Total” means the whole set while “Large” denotes the large motion set.

B.6. Comparison with kernel-based methods

As the kernel-based methods produce pixel-wise motion information such as motion trajectories and kernels, we can use
such information as prior when training the deblurring model. To this end, we train the deblurring model (NAFNet-32) with
such information and compare their results with our method. As shown in Table B.6, simply introducing prior information
does not highly improve performance compared to NAFNet-32. Basically, estimating motion information for every pixel is
a huge ill-posed problem. Therefore, their methods may produce inaccurate information, which is not helpful for subsequent
deblurring tasks. On the other hand, our method overcomes the ill-posedness by introducing the latent sharp image and
logarithmic fourier space as discussed in Section 3.2, which leads to better deblurring performance as shown in Table B.6.

Prior GMACs PSNR ↑ SSIM ↑
NAFNet-32 [6] 16.25 31.99 0.920

Adaptive Basis [3] ✓ 80.60 32.08 0.921
Exposure Trajectory [41] ✓ 72.58 31.94 0.919

SegDeblur-S (ours) ✓ 14.44 32.53 0.927
Table B.6. Comparison with kernel-based methods [3, 41].

C. Implementation details for mobile deployment
We modify some network architecture of our model according to the operations supported by AI accelerators in order to
accelerate our method, which is called SegDeblur-S+. Specifically, SimpleGate, SCA, and LayerNorm in NAFNet [6] are
removed. We train SegDeblur-S+ with a combination of RealBlur [27] and RSBlur [28]. We deploy our SegDeblur-S+ using
32-bit floating point precision on GPU of Qualcomm SM8550 chipset in Samsung Galaxy S23 without any quantization. The
average inference time of our method is measured using TensorFlow Lite Benchmark Tool. Furthermore, we measure the
averaged execution time in Samsung EnhanceX and Google Unblur based on the image size of 2000×2000. The comparison
result for on-chip execution time is presented in Table C.1. Notably, our SegDeblur-S takes nearly twice of the execution time
compared to the accelerated version of our method, SegDeblur-S+. This accounts for the importance of using the network
architectures supported by AI accelerators for the mobile deployment. The on-chip execution time of SegDeblur-S+ (2.35s)
lags behind that of Samsung EnhanceX (1.64s) and Google Unblur (2.03s). Our current implementation is based on on-
chip GPU, such that it can be more accelerated if deployed on Neural Processing Unit (NPU). We conjecture that Samsung
EnhanceX and Google Unblur are implemented on NPU to achieve faster processing.

Methods Device Time GMACs
Samsung EnhanceX - 1.64s -

Google UnBlur - 2.03s -
SegDeblur-S+ (ours) GPU 2.35s 14.05
SegDeblur-S (ours) 4.10s 14.44

Table C.1. On-chip execution time. We measure the averaged execution time on image size of 2000× 2000.

D. Generalization to real-world blur images
We present more real-world examples to compare our method with the recent works and commercial applications. We capture
real-world blur images with natural hand motions by Samsung Galaxy Note S20 Ultra. As shown in Fig. D.1, D.2 and D.3,
the real-world blur images are well-reconstructed by our method. Meanwhile, the recent works and deblurring applications
work well on some blur images but some other blur images are not well-recovered.



(a) Blur Input

(c) Google Unblur

(e) FFTFormer-16 [15]

(b) Samsung EnhanceX

(d) NAFNet-32 [6]

(f) SegDeblur-S (ours)

Figure D.1. Visual comparison results on real-world blur images.



(a) Blur Input

(c) Google Unblur

(e) FFTFormer-16 [15]

(b) Samsung EnhanceX

(d) NAFNet-32 [6]

(f) SegDeblur-S (ours)

Figure D.2. Visual comparison results on real-world blur images.



(a) Blur Input

(c) Google Unblur

(e) FFTFormer-16 [15]

(b) Samsung EnhanceX

(d) NAFNet-32 [6]

(f) SegDeblur-S (ours)

Figure D.3. Visual comparison results on real-world blur images.



E. Visual results on blur segmentation map

(a) Blur Image (b) Sharp Image (c) Image Residual Error (d) Blur Segmentation Map

Figure E.1. Blur segmentation map results on camera motion examples for RealBlur [27].



(a) Blur Image (b) Sharp Image (c) Image Residual Error (d) Blur Segmentation Map

Figure E.2. Blur segmentation map results on object motion examples for ReLoBlur [20].



F. Qualitative results for large deblurring models

(a) Blur Input

(c) UFPNet [11]

(b) MAXIM-3S [35]

(d) SegDeblur-L (ours)

(a) Blur Input

(c) UFPNet [11]

(b) MAXIM-3S [35]

(d) SegDeblur-L (ours)



(a) Blur Input

(c) UFPNet [11]

(b) MAXIM-3S [35]

(d) SegDeblur-L (ours)

(a) Blur Input

(c) UFPNet [11]

(b) MAXIM-3S [35]

(d) SegDeblur-L (ours)

Figure F.1. Qualitative results for large deblurring models in RSBlur [28].



G. Qualitative results for efficient deblurring models

(a) Blur Input (b) NAFNet-32 [6] (c) SegDeblur-S (ours) (d) Ground-Truth Sharp

Figure G.1. Qualitative results for efficient deblurring models in RealBlur [27].



(a) Blur Input

(c) SegDeblur-S (ours)

(b) FFTFormer-16 [15]

(d) Ground-Truth Sharp

(a) Blur Input

(c) SegDeblur-S (ours)

(b) FFTFormer-16 [15]

(d) Ground-Truth Sharp



(a) Blur Input

(c) SegDeblur-S (ours)

(b) FFTFormer-16 [15]

(d) Ground-Truth Sharp

(a) Blur Input

(c) SegDeblur-S (ours)

(b) FFTFormer-16 [15]

(d) Ground-Truth Sharp

Figure G.2. Qualitative results for efficient deblurring models in RSBlur [28].


	. Introduction
	. Related Works
	. Real-World Efficient Motion Deblurring
	. A new perspective of motion deblurring
	. Logarithmic fourier discretization model
	. Discrete-to-continuous conversion model
	. Implementation details

	. Experiments
	. Experimental setup
	. Blind motion deblurring for practical usage
	. Comparison to kernel-free methods
	. Comparison to commercial applications
	. Ablation study

	. Conclusions
	. Implementation Details
	. Our model variants

	. Additional Ablation Study
	. Effects on deblurring network architecture
	. Effects on model size
	. Cross-data validation
	. Different datasets for blur pixel discretizer and D2C converter
	. Performance of large motion test set in RSBlur
	. Comparison with kernel-based methods

	. Implementation details for mobile deployment
	. Generalization to real-world blur images
	. Visual results on blur segmentation map
	. Qualitative results for large deblurring models
	. Qualitative results for efficient deblurring models



