
SDDGR: Stable Diffusion-based Deep Generative Replay
for Class Incremental Object Detection

-Supplementary-

Junsu Kim1 Hoseong Cho 1,2† Jihyeon Kim1,3† Yihalem Yimolal Tiruneh1 Seungryul Baek1

1UNIST 2LG Electronics 3KETI

In the supplementary material, we provide additional
implementation details in Sec. 1, extended ablation study in
Sec. 2, and additional experiments in Sec. 3. The overall
procedure is outlined in Sec. 4. For a more comprehen-
sive understanding of our method, refer to the additional
visualizations in Sec. 5. Lastly, we talk about the effect of
synthetic images containing multi-object to the incremental
detector and future work in Sec. 6
Summary of the main paper. In the main paper, we in-
troduced the stable diffusion (SD)-based replay method for
class incremental object detection (CIOD). Despite the SD’s
advanced capabilities in image generation, its direct appli-
cation to CIOD presents non-trivial challenges that we ad-
dress through our contributions: (1) We first enhanced the
SD’s grounding capabilities following GLIGEN [2]. (2) SD
often generates low-quality images and we propose an ‘iter-
ative class-wise refiner’ that selects N quality samples for
each class, by filtering out low quality images. (3) Gener-
ated images are not always well-aligned with the bounding
boxes that were inputted as the grounding inputs. If non-
aligned bounding boxes are used as ground-truths in the su-
pervised setting, it can spoil overall CIOD accuracy. We by-
pass the issue by involving the ‘L2 distillation loss’: apply-
ing pre-trained network to obtain responses from generated
images and enforcing the responses to a new model, with-
out use of input bounding boxes. (4) We further optimized
SD by adjusting text prompts and grounding signals, aim-
ing for higher fidelity in generated images. This refinement
process underscores our efforts to decrease dependency on
SD’s inherent capabilities.

1. Additional implementation details

Hyper-parameters. In our implementation, we utilized
distributed data parallel in PyTorch [6] using 4 GPUs. The
total batch size is 32 in the training process. During the
generation process, each GPU utilizes 4 random noises

This research was conducted when Hoseong Cho and Jihyeon Kim
were graduate students (Master candidates) at UNIST†.

Table 1. Ablation study of generation-refinement on COCO 2017
(two-phase setting, 70+10). The experiment was conducted ex-
cluding L2 knowledge distillation to solely evaluate the effect of
synthetic data. The best result is highlighted in bold. A red up-
ward arrow ↑ indicates the performance improvement.

Setting AP AP.5 AP.75

N =∞ 33.4 50.5 36.4
N = 50 39.8 6.4↑ 57.7 7.2↑ 43.4 7.0↑

Table 2. Approximate time computation based on the use of 4
A100 GPUs.

Class-wise counts Generation time Training time Total time
N =∞ ∼84 hours ∼42 hours ∼126 hours
N = 50 ∼15 hours ∼21 hours ∼36 hours

(i.e. batch size of 4 on each GPU), allowing for the si-
multaneous generation of 16 images. For the stable dif-
fusion sampler, we employ the PLMS [4] method. Addi-
tionally, we allocated both positive and negative prompts
to control generated outputs. The scene environments of
the custom positive prompt in Sec. 4.1 (main paper) used
{“demonstrating ultra high detail, 4K, 8K, ultra-realistic,
crisp edges, smooth, hyper-detailed textures”}. The neg-
ative prompt used {“blurry, overlapping objects, distorted
proportions, monochrome, grayscale, bad hands, deformed,
lowres, error, normal quality, watermark, duplicate, worst
quality, obscured faces, low visibility, unnatural colors,
long body, bad anatomy, missing fingers, extra digit, fewer
digits, cropped”}. All other hyper-parameters related to the
generation carefully followed the settings of [2].

2. Additional ablations

Class-wise N limitation. We further evaluate the impact
of the hyper-parameter N that limits the number of synthe-
sized images per each class. From Tab. 1, we can observe
that when synthetic data is generated using the entire set of
previous annotations Ym−1 (N = ∞), the new model Mm

1



Algorithm 1 Training with generated images and real data.
Input: Generated (synthetic) dataset Dgen, Real new dataset Dm for new task Tm, Old modelMm−1, New modelMm, Old tasks Tm−1.
Define: m: task index.
Define: yh: Annotation for the h-th image, xh: h-th image.
Define: H: The total number of data in Dtotal.

Dgen ← generation process of old tasks Tm−1 if m > 1 // Create generated dataset. Refer to main paper Sec. 4.1 and 4.2.
Dtotal ← Dgen ∪ Dm if m > 1 else Dm // Total dataset of Tm.
for h = 1, . . . , H do

Extract h-th annotation yh
total and image xh

total from Dtotal.
if xh

total ∈ Dgen then
Apply L2 knowledge distillation fromMm−1 toMm. // Training for synthetic dataset Dgen. Refer to main paper Sec. 4.4.

else
Apply pseudo-labeling to xh

total usingMm−1. // pseudo-labeling to new task images (xh
total ∈ Dm). Refer to main paper Sec. 4.3.

TrainingMm with xh
total. // Training with pseudo labeled annotations and now annotations.

end
end

Table 3. Additional comparison of different methods in 40 + 40
setting on D-DETR baseline. The best result is highlighted in
bold.

Method AP AP.5 AP.75

LWF [3] applied on D-DETR 18.2 26.5 19.8
ICaRL [7] applied on D-DETR 29.9 42.7 32.7

Incremental-DETR [1] 37.3 56.6 -
CL-DETR [5] 42.0 60.1 45.9
SDDGR(Ours) 43.0 62.1 47.1

Table 4. Additional comparison of different methods in 70 + 10
setting on D-DETR baseline. The ”-” symbol indicates a missing
value, as reported in paper [1]. The best result is highlighted in
bold.

Method AP AP.5 AP.75

LWF [3] applied on D-DETR 4.3 6.2 4.8
ICaRL [7] applied on D-DETR 18.3 28.1 19.6

Incremental-DETR [1] - - -
CL-DETR [5] 40.4 58.0 43.9
SDDGR(Ours) 40.9 59.5 44.8

tends to overfit to the synthetic data, and thereby exhibits a
notable accuracy drop. Furthermore, as shown in Tab. 2, it
takes approximately 126 hours for overall training process.
In contrast, when N = 50 is used, the time is significantly
reduced to 36 hours, while achieving the best results. This
implies the importance of choosing the proper number of
synthetic samples during training.

3. Additional experiements

We provide an additional comparison of our SDDGR model
with several prominent methods. These include LWF,
ICARL, Incremental-DETR, and the previous state-of-the-
art, CL-DETR, all of which are based on the Deformable-

0 10 20 30 40 50 60
Number of objects

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
un

t o
f i

m
ag

es

 5
Train data

0 10 20 30 40 50 60
Number of objects

0

200

400

600

800

Co
un

t o
f i

m
ag

es

 5
Test data

0 10 20 30 40 50 60
Number of objects

0.2

0.3

0.4

0.5

0.6

0.7

m
AP

@
0.

5:
0.

95

mAP comparison
SDDGR(Ours)
DDETR(Upper)

Figure 1. (Col. 1-2) dist. of object # in train/test sets, (Col. 3)
mAP gap between SDDGR(Ours) vs. DDETR according to # of
objects.

DETR framework. Tables 3 and 4 illustrate the superior
performance of our SDDGR approach in both the 40 + 40
and 70 + 10 settings. These results highlight the effec-
tiveness of the SDDGR method, which outperforms other
methodologies in the same baseline.

4. Overall procedure
The overall procedure of the SDDGR framework is summa-
rized in Alg. 1 to describe the sequence of synthetic image
generation and training.

5. Additional visualization
We experimented with the effect of the different inputs on
the final image quality in Fig. 2. We also visualized more
examples for generated images according to their classes in
Fig. 3. Additionally, Fig. 4 presents the detection results
using three of our baselines and Fig. 5 presents the more
detection results of ours.

6. Discussion and future work
This section explores the challenges of generating syn-
thetic images, especially those depicting scenes with multi-
objects. It is commonly believed that the performance of
generative models, such as Stable Diffusion (SD), declines
as the complexity of the scene increases. To directly ana-
lyze the challenges’ impact on SDDGR, we have examined



the distribution of images by the number of objects along-
side the model’s performance, and we present this analysis
in Fig. 1.

Essentially, there is a sharp decrease in the frequency of
images containing more than five objects (denoted by the
red line) on COCO dataset distribution, as depicted on the
leftmost and middle of Fig. 1. Furthermore, the rightmost of
Fig. 1, contrasts the mean Average Precision (mAP) of our
SDDGR model in a 70+10 setting with that of the upper-
bounded Deformable-DETR (D-DETR), which trained with
integrated both new and older classes. From the graph, we
found that the accuracy disparity between SDDGR and the
upper-bounded D-DETR is minimal across different object
counts. This observation suggests that the inherent chal-
lenges of complex scene generation do not significantly af-
fect SDDGR’s performance. However, we think explicitly
tackling the aspect could be a future research direction.

References
[1] Na Dong, Yongqiang Zhang, Mingli Ding, and Gim Hee Lee.

Incremental-detr: Incremental few-shot object detection via
self-supervised learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 543–551, 2023. 2

[2] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. Gli-
gen: Open-set grounded text-to-image generation. In CVPR,
2023. 1

[3] Zhizhong Li and Derek Hoiem. Learning without forgetting.
ECCV, 2016. 2

[4] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo nu-
merical methods for diffusion models on manifolds. ICLR,
2022. 1

[5] Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, and Christian
Rupprecht. Continual detection transformer for incremental
object detection. In CVPR, 2023. 2

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. NIPS,
2019. 1

[7] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H Lampert. icarl: Incremental classifier and
representation learning. In CVPR, 2017. 2



refrigerator

bear

umbrella

(b)

person

umbrella

cat

person

(c) (d) (e) (f)(a)

fire

hydrant
x 4

tennis 

racket

tooth 

brush

person

car

x 2

x 2

x 2

oven x 2

sink

Figure 2. Differences in image generation based on input types. Each row in this figure represents different examples used for image
synthesis, with varying prompts. The first row uses prompts ‘A photo of tennis racket and person, realistic, ... details.’ The second row
uses prompts ‘A photo of umbrella and cat, ...’. The third row uses prompts ‘A photo of toothbrush and person, ...’. The fourth row uses
prompts ‘A photo of four fire hydrants, ...’. The fifth row uses prompts ‘A photo of umbrella, two persons, and two cars, ...’. The sixth
row uses prompts ‘A photo of two bears, ...’. Finally, the last row uses prompts ‘A photo of a refrigerator, two ovens, and a sink, ...’. For
each set of images: (a) and (b) show the grounding inputs (object classes and bounding boxes), (c) displays COCO real images, (d) depicts
images generated by inputting only the text prompt, (e) shows images generated by combining grounding inputs and the text prompt, and
(f) illustrates images generated by incorporating the combination of text prompt, grounding inputs, and CLIP’s image embedding.



“bench” “bird”“stop sign” “train” “donut” “toilet” “apple”

“bear” “bus”“boat” “cat” “dog” “suitcase” “giraffe”

Figure 3. Example generated images for the class-specific generation process.



Original COCO OursOurs w/o distillationOurs w/o distillation,
generative replay

horse

person person

horsehorse horse
horse

zebra zebra
zebra

zebra

cow
cow

cow

cow

cow
cow

cow

cow

cow

person
horse

person
horse

bench

person
horse

potted
plant

airplane airplane airplane

airplane

airplane

truck

car car

traffic 
light

car

car
car

cow

cow

potted
plant

potted
plant

Figure 4. Our detection results on COCO 2017 (two-phase setting, 70+10).



Original COCO Ours

airplane

bag
bag

zebra

zebra

chair

bird

bird

bottle

bookbook

vase

Potted
plant

Figure 5. Our detection results on COCO 2017 (two-phase setting, 70+10).


	. Additional implementation details
	. Additional ablations
	. Additional experiements
	. Overall procedure
	. Additional visualization
	. Discussion and future work

