Selectively Informative Description can Reduce Undesired Embedding
Entanglements in Text-to-Image Personalization

Supplementary Material

A. Evaluation measures

To evaluate embedding entanglements, we introduced
two measures: subject-alignment and non-subject-
disentanglement. These measures are obtained from the
widely used image-alignment score, which calculates
the cosine similarity between reference and generated
images in the CLIP [13] (or DINO [1]) embedding space.
Unlike the image-alignment score, subject-alignment and
non-subject-disentanglement utilize segmented reference
images to assess similarities associated with subject seg-
ments or non-subject segments, providing clear insights
into both subject preservation and the presence of undesired
entanglements.

In Fig. A.1, we compare image-alignment measure with
our two customized measures using a dog example. The
second and third rows in the figure display scores for two
images generated by a personalized text-to-image diffu-
sion model. The first row shows an image that fails to
preserve the subject identity, with an undesirable back-
ground entanglement (natural landscape). The second row
shows an image that successfully preserves the subject
identity while disentangling the undesirable background.
Our example in Fig. A.1 reveal that the image-alignment
can be significantly influenced by background informa-
tion, raising concerns about its accuracy when measuring
subject preservation in highly biased scenarios. In con-
trast, subject-alignment accurately evaluates subject preser-
vation and non-subject-disentanglement effectively identi-
fies background entanglement in Fig. A.l. These differ-
ences make the two customized measures well-suited for
analyzing text-to-image personalization models in any level
of biased scenarios.

While the two customized measures effectively cap-
ture subject preservation and undesired entanglements, they
have limitations in evaluating style re-contextualization.
Specifically, the two measures rely on segmentation in the
image pixel space, making it challenging to separate style
from the image itself. Moreover, quantifying style similari-
ties while disregarding the content presented in the image is
not a straightforward task. Consequently, in all the quantita-
tive analyses presented in this paper, we have excluded sce-
narios involving painting/cartoon style re-contextualization,
even though our approach demonstrates significant visual
improvements. As part of our future work, we plan to ex-
plore and identify a suitable measure capable of capturing
style similarities independently of the image’s content.

All three measures employed in this paper, namely

subject-alignment, non-subject-disentanglement, and text-
alignment, were calculated with the CLIP ViT-B/32 model.
When calculating subject-alignment, we apply center align-
ment and image resizing to the subject segments before
feeding them into the CLIP image encoder.

B. Human evaluation

Method Subject-alignment  Non-subject-disentanglement ~ Text-alignment ~ Overall

DreamBooth 36.2% 10.9% 7.8% 15.5%
DreamBooth + SID 40.6% 68.8% 59.7% 70.9%
Undecided 23.2% 20.3% 32.5% 13.6%

Table B.1. Human evaluation results.

We conducted human evaluation involving 130 partic-
ipants mainly recruited from our university community
anonymously. The survey comprised 4 questions per sub-
ject, assessing subject-alignment, non-subject disentangle-
ment, text-alignment, and the overall judgement consider-
ing all three aspects. Each participant evaluated 10 sub-
jects, resulting in 40 problems, choosing between two im-
ages generated by DreamBooth and SID-integrated Dream-
Booth, respectively, and the order of the images was ran-
domized. In cases of difficulty, participants could opt for
the “Cannot Determine / Both Equally” option. In Tab. B.1,
the survey results show that our method was preferred over
DreamBooth in all aspects, with particularly notable differ-
ences observed in text-alignment, non-subject disentangle-
ment, and the overall judgement. The results were also con-
sistent with the results of our metric analysis in Fig. 8, sup-
porting our metric analysis results significantly.

C. Implementations and datasets in detail
C.1. Descriptions in style re-contextualization

In style re-contextualization, we employed the phrase “A
painting/cartoon in the style of [v] art’’ as our baseline train
description, which is also used in Textual Inversion [2] and
Custom Diffusion [6] to capture the styles of reference im-
ages. For generating SID that extends the baseline descrip-
tion, we made a slight modification to the VLM instruction
as follows:

Describe the image in one sentence

in detail. Please start the sentence
with "A painting/cartoon in the style
of art.". You should not describe the
style of the painting/cartoon itself.



Figure A.1. A comparison between image-alignment and two customized measures. The top row shows the reference image and
its two segmented versions, while the left column shows two images generated with the prompt “A [v] dog in a chef outfit.” Despite
poor subject preservation, the upper image in the left column obtains a higher image-alignment score because of the background bias.
In contrast, subject-alignment effectively assesses subject preservation and non-subject-disentanglement accurately identifies background

disentanglement.

C.2. Model implementations

In this section, we provide the implementation details
of the baseline models employed in this paper. We se-
lected “stable-diffusion-2-1-base” as the backbone models
for DreamBooth [15], SVDiff [3], Custom Diffusion [6],
and Textual Inversion [2]. As for ELITE [20] and BLIP-
Diffusion [7], we employed the backbone models used in
their respective official GitHub repositories [16, 21]. All the
generated images are sampled using the DDIM [18] sam-
pler, employing 50 steps and a guidance scale [5] of 7.5.

DreamBooth [15]. We implemented DreamBooth using
the Hugging Face Diffusers library [19]. The model was
trained with a batch size of 1 and a learning rate of 1 x 106
for 1000 iterations. We also trained a CLIP [13] text encoder
in conjunction with the U-Net [14].

SVDiff [3]. We implemented SVDiff using a third-party
implementation [10] due to the unavailability of official
code. The model was trained for 1000 iterations with de-
fault hyperparameter settings.

Custom Diffusion [6] & Textual Inversion [2]. We im-
plemented Custom Diffusion and Textual Inversion using
the Hugging Face Diffusers library [19], with default hy-
perparameter settings.

ELITE [20] & BLIP-Diffusion [7]. We implemented
ELITE and BLIP-Diffusion using the official GitHub repos-
itories [16, 21].

C.3. Dataset details

The quantitative analyses in our work are based on
the dataset shown in Fig. C.1. The 15 subjects in
the dataset were chosen as the prominently utilized
subjects in three recent text-to-image personalization
works [2, 6, 15]. Specifically, 7 subjects were chosen
from DreamBooth [15]: [cat, dog3, dog6, pink
sunglasses, vase, backpack, rc car], 7
subjects from Custom Diffusion [6]: [barn, cat,
dog, flower, chair, teddybear, wooden
pot],and 1 from Textual Inversion [2]: [cat toy].The
subjects cover a variety of categories including living ani-
mals (5 subjects), plants (1 subject), buildings (1 subject),
toys (3 subjects), artistic containers (2 subjects), and three
other objects (3 subjects). For each of these subjects, 25
generation prompts are used, and 20 images are generated
per prompt with different random noise initializations,
resulting in a total of 7500 generated images.

C.4. VLM details

In Sec. 3.2., we selected the multimodal GPT-4 as our

choice for generating SID after evaluating three instruction-

following VLMs, each with the following versions:

* BLIP-2 [8]: “blip2-opt-2.7b” [17]

 LLaVA [9]: “llava-v1-0719-336px-lora-merge-vicuna-
13b-v1.3” [4]

* GPT-4 [12]: Multi-modal GPT-4 provided in Chat-
GPT [11]

We have noticed that the GPT-4 Vision API was announced



to be released after November 6th, 2023, and we look for-
ward to using it to simplify the SID generation process.

Given the rapid evolution of VLMs, including the recent
releases of GPT-4 Turbo with vision and LLaVA v1.5, we
acknowledge that our analysis in Sec. 3.2. is limited to the
versions mentioned above. Comparison results may be af-
fected with the introduction of these new VLM versions or
customized VLM instructions. We emphasize that our pri-
mary research focus is to identify a description format that
can reduce undesired entanglement rather than the ease of
generating train descriptions. We acknowledge that the op-
timal VLM for generating SID can change with the emer-
gence of newer VLM versions at any moment.

D. Limitations of SID
D.1. Failure cases with GPT-4

While GPT-4 [12] generally generates descriptions that
closely match the provided instructions, occasional failures
do occur. In Fig. D.1, we report two instances where GPT-4
does not generate prompts that align closely with the prop-
erties of SID.

D.2. Selectively describing facial expression

We observed that SID-integrated models often face difficul-
ties in altering the subject’s facial expression according to
the generation prompt, especially when the reference im-
ages display strong facial expressions. This challenge arises
due to the lack of text descriptions of the subject’s facial ex-
pressions in the VLM-generated SID, resulting in undesired
entanglement of the facial expressions in the subject embed-
ding. We discovered that this challenge can be addressed
by incorporating text descriptions of the facial expressions
into the SID. Specifically, this can be achieved by modify-
ing the instructions of VLM for SID or manually adding
descriptions of the facial expressions into SID. For exam-
ple, in Fig. D.2, we demonstrated that manually adding de-
scriptions of the subject’s facial expression can resolve the
undesired feature entanglement issue, successfully altering
the subject’s facial expression.

E. Additional experiment results

In this section, we provide additional experiment results to
augment those presented in the main text. Additionally, we
conduct qualitative comparisons between DreamBooth [15]
and its SID-integrated counterpart in scenarios with varying
levels of biases.

E.1. Four description cases

To further validate the effectiveness of Case 3 (Ours)
among the four description cases defined in Tab. 1, we
conducted a quantitative comparison. The results are re-
ported in Tab. E.2 and additional qualitative comparisons

are shown in Fig. E.1. In Tab. E.2, Case 1 (Baseline) ex-
hibits high subject alignment but lacks in text-alignment
and non-subject disentanglement, indicating undesired em-
bedding entanglement. On the other hand, Case 4 demon-
strates optimal text-alignment and high non-subject disen-
tanglement but significantly falls short in subject-alignment,
as also evident in Fig. E.1. In contrast, both Case 2 and
3 achieve decent scores across all three measures, with
Case 3 (Ours) outperforming Case 2 in all aspects. To con-
clude, Case 3 (Ours) achieves the best subject-alignment
and non-subject-disentanglement, along with near-best text-
alignment scores, which agree with the additional qualita-
tive comparisons in Fig. E.1.

E.2. Instruction-following VLMs

To support the explanations presented in Sec. 3.2., we
present additional comparisons of the three instruction-
following VLMs in Fig. E.3. Additionally, we provide
quantitative comparisons among the three VLMs to as-
sess whether the multi-modal GPT-4 [12] outperforms the
other two VLMs, namely LLaVA [9] and BLIP-2 [8],
in terms of text-alignment, subject-alignment, and non-
subject-disentanglement. The results are shown in Tab. E.3,
demonstrating that GPT-4 excel over the other two VLMs
in all three measures.

E.3. Cross-attention map analysis

To extend the analysis presented in Sec. 5, we conducted
the cross-attention map analysis on the four cases of train
descriptions detailed in Fig. 3, top row. In Fig. E.2, our anal-
ysis focused on the nearby-object bias, which can similarly
be applied to other biased scenarios. In Cases 1 and 2, the
identifier [v] erroneously focuses on the nearby-object, ‘the
purse’, in each generated image. Conversely, Cases 3 and 4
demonstrate a notable improvement in focusing on the sub-
ject, ‘the perfume’. The primary distinction between these
two groups of cases lies in the inclusion of informative spec-
ifications related to the non-subjects. This indicates that in-
corporating informative specifications can reduce the unde-
sired focus or generation of the non-subjects. However, it
is crucial to include informative specification selectively, as
demonstrated in Case 4, where the inclusion of the informa-
tive specification related to the subject destroys its identity.

E.4. Enhancement by SID

We present comprehensive generation results of Fig. 5 in
Fig. E.4 (a), (b), (c), and (d), where the generation outcomes
are presented without any selection. Additional experimen-
tal results can be found in Fig. E.4 (e), (f), (g), and (h). We
observed that, in the context of undesired embedding disen-
tanglement, SVDiff stands out among other models. In case
of Textual Inversion, the baseline model exhibits a low level
of subject alignment, resulting in the SID-integrated model
encountering a similar challenge.



Figure C.1. Dataset used for quantitative analyses. An example image of each subject is shown. The 15 subjects were chosen from three
recent works: 7 from DreamBooth [15], 7 from Custom Diffusion [6], and 1 from Textual Inversion [2].

Descriptions Text Subject Non-subject
alignment alignment disentanglement
Case 1 (Baseline) 0.290 0.686 0.299
Case 2 0.311 0.685 0.342
Case 3 (Ours) 0.317 0.686 0.352
Case 4 0.325 0.659 0.348

Table E.2. Quantitative comparison of four description cases.
We have performed a quantitative analysis of the four cases of de-
scriptions listed in Tab. 1. Case 3 (Ours) achieves the best perfor-
mance for subject alignment and non-subject disentanglement. It
also significantly improves text-alignment when compared to the
Case 1 (Baseline).

E.5. Enhancement for a single reference image

We present comprehensive and additional results of Fig. 6
in Fig. E.5 (a), (b), (), ..., (h).

E.6. Negative prompt and segmentation

We present comprehensive and additional results of Fig. 10
in Fig. E.6 (a) and (b).

E.7. Highly, moderately, and low-biased scenarios

We compare DreamBooth [15] with its SID-integrated
counterpart in scenarios with varying levels of biases: high,
moderate, and low. The generation results for each scenario
can be found in Fig. E.7 (a), (b), and (c).

VLMs ' Text Subj ect ’Non—subject
alignment alignment disentanglement
GPT-4 [12] 0.317 0.684 0.354
LLaVA [9] 0.311 0.681 0.340
BLIP-2 [8] 0.311 0.683 0.343

Table E.3. Quantitative comparison of instruction-following
VLMs. The multi-modal GPT-4 demonstrates superior perfor-
mance in all three measures when used for generating SIDs.

F. Societal impact

Our approach enhances personalized image synthesis, mak-
ing it easier to create realistic images of personalized sub-
jects in new contexts, even with highly biased reference im-
ages, including just a single reference image. While this ad-
vancement fosters creativity and contributes to the sharing
of personalized content that closely aligns with user guid-
ance, it also raises concerns about potential misuse by ma-
licious users who may exploit generative models for decep-
tion or unauthorized copyright infringement. Additionally,
these generative models inherit biases from the large-scale
dataset used in the pre-training stage, which could inad-
vertently misinform the public. Future research should pri-
oritize defending against such misuse and reducing biases
in generative models to ensure responsible and ethical use,
particularly in personalized image synthesis.



(a) Jar

(b) Cat toy
Figure D.1. Imperfection of GPT-4. In (a), the description generated by GPT-4 includes an informative specification of the label attached
to the jar, leading to the omission of the subject’s label in the generated image. In (b), the description depicts the tail of the cat toy as a
walking stick, resulting in the omission of the tail in the generated image.

Figure D.2. Selectively describing facial expression. When the SID generated by GPT-4 lacks information about facial expression, the
SID-integrated model fails to modify the subject’s facial expression, as depicted in the middle row. By manually designing SID to describe
the subject’s facial expression, the SID-integrated model successfully disentangles the subject identity from the facial expression, as
demonstrated in the last row. The manually designed SID is “a [v] dog with a joyful and open-mouthed expression, with its tongue hanging
out.”



Figure E.1. Additional examples for comparing the four cases of descriptions. Case 2 shows a decent generation with occasional
entanglements such as (top row) curly hair, not aligned with generation prompt, and gray plaid pattern and (middle row) spiky plant. Case
4 demonstrates high text-alignment but significantly falls short in subject preservation. Case 3 (Ours) successfully achieves the desired
qualities: text-alignment, subject-alignment, and non-subject-disentanglement.

Figure E.2. Cross-attention maps of the identifier [v] for the four cases of train descriptions from Fig. 3, top row. In Cases 1 and 2,
attention is spread towards non-subject parts. However, in Cases 3 and 4, thanks to the informative specification of the non-subject, this
spreading of attention is highly reduced.



Figure E.3. Additional examples for comparing the three instruction-following VLMs for generating SID. LLaVA tends to include
informative specifications of the subject itself or fall short in providing sufficient specifications of the undesired objects. BLIP-2 exhibits
limitations in achieving a thorough identification of the undesired objects. Even when it successfully identifies an undesired object, it tends

to generate simple captions without informative specifications. Compared to the other two, GPT-4 excels in generating captions that satisfy
our instructions.



Figure E.4. (a) Enhancement by SID - additional example #1. SID-integration effectively resolves the entanglement problem of indoor
background (background bias).



Figure E.4. (b) Enhancement by SID — additional example #2. SID-integration effectively resolves the entanglement problems of potted
plant and white sheet background (nearby-object bias).



Figure E.4. (c) Enhancement by SID - additional example #3. SID-integration effectively resolves the entanglement problem of filled-in
blueberries (tied-object bias).



Figure E.4. (d) Enhancement by SID — additional example #4. SID-integration effectively resolves the entanglement problem of sun-
flowers (substance bias).



Figure E.4. (¢) Enhancement by SID - additional example #5. SID-integration effectively resolves the entanglement problem of indoor
background (background bias).



Figure E.4. (f) Enhancement by SID - additional example #6. SID-integration effectively resolves the entanglement problem of a plant
with sharp-edged leaves (nearby-object bias).



Figure E 4. (g) Enhancement by SID - additional example #7. SID-integration effectively resolves the entanglement problem of filled-in
blueberries and a white sheet background (tied-object bias and background bias).



Figure E.5. (a) Enhancement by SID for a single reference image — additional example #1. DreamBooth and encoder-based models fail
at removing blueberries from the bowl. Furthermore, they often fail at filling the bowl with lemons.

Figure E.5. (b) Enhancement by SID for a single reference image — additional example #2. DreamBooth and encoder based models
struggle with generating images of a dog running in diverse poses (pose bias).



Figure E.5. (c) Enhancement by SID for a single reference image — additional example #3. DreamBooth not only generates a vase but
also the nearby teapot and saucer. Encoder-based models struggle to preserve the identity of the vase, possibly because of the infrequent
occurrences of vases during the encoder pre-training.

Figure E.5. (d) Enhancement by SID for a single reference image — additional example #4. DreamBooth and encoder based models
struggle with generating images of a dog playing with a ball in diverse poses (pose bias).



Figure E.5. (¢) Enhancement by SID for a single reference image — additional example #5. DreamBooth struggles with preserving
the identity of the bowl and also with generating a background that is aligned with the generation prompt. Encoder-based models face
challenges in removing blueberries from the bowl and replacing them with salad.

Figure E.5. (f) Enhancement by SID for a single reference image — additional example #6. When trained with a single reference image,
DreamBooth sometimes produces results that are completely overfit to the reference image, particularly when faced with challenging
generation prompts.



Figure E.5. (g) Enhancement by SID for a single reference image — additional example #7. While other models failed to generate a
backpack, the SID-integrated DreamBooth successfully produced a backpack in the style of the main subject.

Figure E.5. (h) Enhancement by SID for a single reference image — additional example #8. SID-integrated DreamBooth successfully
altered the material of the main subject while preserving its identity.



Figure E.6. (a) Comparison with negative prompt — additional examples. Even when a negative prompt is employed, it appears chal-
lenging to counter the effects of undesired embedding entanglements. Negative prompts used: “sitting on the fluffy blanket and green
couch” (1st row), “next to a black Prada purse with silver hardware on a bed of white sheets” (2nd row), “full of blueberries is on the bed
of white sheet” (3rd row), “a bouquet of sunflowers in the round vase” (last row). DreamBooth is used as the base model.



Figure E.6. (b) Comparison with segmentation — additional examples. Employing segmentation to mitigate undesired embedding entan-
glement still presents certain limitations. The first row highlights the constraint of dynamically changing poses. The second row underscores
the incapacity to generate intricate backgrounds, possibly due to the common presence of a black background in segmentation. The last
row illustrates that removal of tied objects (blueberries in this case) may lead to generated images with peculiar artifacts. DreamBooth is
used as the base model.



Figure E.7. (a) Comparing DreamBooth with its SID-integration in highly-biased scenarios. DreamBooth suffers from undesired
embedding entanglement represented by indoor background (1st row), nearby purse (2nd row), filled-in blueberries (3rd row), and cat

substance (last row). SID-integration is definitely required for high-quality text-to-image personalization. Image credit: David Revoy (last
Tow).


https://www.peppercarrot.com/

Figure E.7. (b) Comparing DreamBooth with its SID-integration in moderately-biased scenarios. DreamBooth still suffers from un-
desired embedding entanglement even in moderately-biased scenarios. This is evident in the background mountain (1st row), rocky surface
(2nd row), nearby teapot, saucer, and filled-in plants (3rd row), and grassy field (last row). In particular, in the second row, DreamBooth en-
counters difficulty preserving the identity of the subject, as it tends to change its color. SID-integration is definitely required for high-quality
text-to-image personalization.



Figure E.7. (c) Comparing DreamBooth with its SID-integration in low-biased scenarios. In scenarios with much less or almost no
bias in the reference images, both DreamBooth and SID-integrated DreamBooth demonstrate remarkable performance.
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