Supplementary Material
SwitchLight: Co-design of Physics-driven Architecture and
Pre-training Framework for Human Portrait Relighting

1. Implementation Details

Training Our method incorporates both pre-training, span-
ning for 100 epochs, and fine-tuning phases lasting 50
epochs. In the pre-training stage, we utilized the ImageNet
dataset, using a batch size of 1024 images, each with a resolu-
tion of 256 x 256 pixels. We employed the Adam optimizer;
10k linear warm-up schedule followed a fixed learning rate
of 1le~*. In the fine-tuning stage, we switched to the OLAT
datset, with a batch size reduced to 8 images, each at a reso-
lution of 512 x 512 pixels. The Adam optimizer is used with
a fixed learning rate of 1le~*. The entire training process
takes one week to converge using 32 NVIDIA A6000 GPUs.

We pre-train a single U-Net architecture during this pro-
cess. In the subsequent fine-tuning stage, the weights from
this pre-trained model are transferred to multiple U-Nets -
NormalNet, DiffuseNet, SpecularNet, and RenderNet. In
contrast, [llumNet, which does not follow the U-Net archi-
tecture, is initialized with random weights. To ensure com-
patibility with the varying input channels of each network,
we modify the weights as necessary. For example, weights
pre-trained for RGB channels are copied and adapted to fit
networks with 6 or 9 channels.

Data To generate the relighting training pairs, we randomly
select each image from the OLAT dataset. Two randomly
chosen HDRI lighting environment maps are then projected
onto these images to form a training pair. The images un-
dergo processing in linear space. For managing the dynamic
range effectively, we apply logarithmic normalization using
the log(1 + z) function.

Architecture SwitchLight employs a UNet-based architec-
ture, consistently applied across its Normal Net, Diffuse
Net, Specular Net, and Render Net. This approach is in-
spired by recent advancements in diffusion-based models [2].
Unlike standard diffusion methods, we omit the temporal
embedding layer. The architecture is characterized by sev-
eral hyperparameters: the number of input channels, a base
channel, and channel multipliers that determine the chan-
nel count at each stage. Each downsampling stage features
two residual blocks, with attention mechanisms integrated

Normal Net Diffuse Net Specular Net Render Net

Inch 3 6 9 9
Base ch 64 64 64 64

Ch mults [1,1,2,2,4,4] [1,1,2,2,4,4] [1,1,2,2,4,4] [1,1,2,2,4,4]
Num res 2 2 2 2
Head ch 64 64 64 64

Att res [8,16,32] [8,16,32] [8,16,32] [8,16,32]
Out ch 3 3 2 3

Table 1. Network Architecture Parameters. This table outlines
the key hyperparameters and their corresponding values; initial
input channels (In ch), base channels (Base ch), and channel multi-
pliers (Ch mults) that set the stage-specific channel counts. It also
indicates the number of residual blocks per stage (Num res), the
number of channels per head (Head ch), the stages where attention
mechanisms are applied based on feature resolution (Att res), and
the final output channels (Out ch).

at certain resolutions. The key hyperparameters and their
corresponding values are summarized in Table. 1.

IlumNet is composed of two projection layers, one for
transforming the Phong lobe features and another for image
features, with the latter using normal bottleneck features as
a compact form of image representation. Following this, a
cross-attention layer is employed, wherein the Phong lobe
serves as the query and the image features function as both
key and value. Finally, an output layer generates the final
convolved source HDRI.

The Discriminator network is utilized during both pre-
training and fine-tuning stages, maintaining the same archi-
tectural design, although the weights are not shared between
these stages. This network is composed of a series of resid-
ual blocks, each containing two 3x3 convolution layers,
interspersed with Leaky ReLU activations. The number of
filters progressively increases across these layers: 64, 128,
256, and 512. Correspondingly, as the channel filter count
increases, the resolution of the features decreases, and finally,
the network compresses its output with a 3x3 convolution
into a single channel, yielding a probability value.

Regarding the activation functions across different net-
works: NormalNet processes its outputs through /5 normal-
ization, ensuring they are unit normal vectors. IllumNet,
DiffuseNet, and RenderNet utilize a softplus activation (with
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Figure 1. User Study Interface comparing relighting results with
prior approaches, focusing on consistency in lighting, preservation
of facial details, and retention of original identity.

B = 20) to generate non-negative pixel values. SpecularNet
employs a sigmoid activation fuction, ensuring that both
the roughness parameter and Fresnel reflectance values fall
within a range of O to 1.

2. User Study Interface

Our user study interface is outlined as follows: Participants
are shown an input image next to a diffused ball under the
target environment map lighting. The primary objective is
to compare our relighting results with baseline methods, as
depicted in Fig. 1. Evaluation focuses on three criteria: 1)
Consistency of lighting, 2) Preservation of facial details,
and 3) Retention of the original identity. This comparison
aims to determine which image best matches the lighting
of the diffused ball while also maintaining facial details
and original identity. To ensure unbiased evaluations, we
randomized the order of presentation. Participants evaluated
30 random samples from a set of 256. This dataset included
32 portraits from the FFHQ dataset [3], each illuminated
under eight distinct lighting conditions.

3. Video Demonstration

We present a detailed video demonstration of our Switch-
Light framework. Initially, we use real-world videos from
Pexels [1] to showcase its robust generalizability and practi-
cality. Then, for state-of-the-art comparisons, we utilize the
FFHQ dataset [3] to demonstrate its advanced relighting ca-
pabilities over previous methods. The presentation includes

several key components:

1. De-rendering: This stage demonstrates the extraction of
normal, albedo, roughness, and reflectivity attributes from
any given image, a process known as inverse rendering.

2. Neural Relighting: Leveraging these intrinsic properties,
our system adeptly relights images to align with a new,
specified target lighting environment.

3. Real-time Physically Based Rendering (PBR): Utiliz-
ing the Three.js framework and integrating derived intrin-
sic properties with the Cook-Torrance reflectance model,
we facilitate real-time rendering. This enables achieving
30 fps on a MacBook Pro with an Apple M1 chip (8-core
CPU and 8-core GPU) and 16 GB of RAM.

4. Copy Light: Leveraging SwitchLight’s ability to predict
lighting conditions of a given input image, we explore an
intriguing application. This process involves two images,
a source and a reference. We first extract their intrinsic
surface attributes and lighting conditions. Then, by com-
bining the source intrinsic attributes with the reference
lighting condition, we generate a new, relit image. In this
image, the source foreground remains unchanged, but its
lighting is altered to match that of the reference image.

5. State-of-the-Art Comparisons: We benchmark our
framework against leading methods, specifically Total
Relight [4] and Lumos [6], to highlight substantial per-
formance improvements over these approaches.

4. Additional Quantitative Results

Quantitative comparison on decomposed intrinsics

Normal MAE| MSE] SSIM{ LPIPS |
TR 0.1315 03517 0.854  3.195
SwitchLight 0.1306 0.3455 0.8514  3.238

Table 2. Quantitative Evaluation of Normals on the OLAT test set.

Albedo (log) MAE] MSE] SSIM T LPIPS |
TR 0.8449 0.0173 09282 0.1706
SwitchLight  0.8097 0.0156 0.9342  0.1618

Table 3. Quantitative Evaluation of Albedos on the OLAT test set.

As shown in Table 2, our method outperforms TR
framework in MAE/MSE for normal prediction but lags in
SSIM/LPIPS, likely due to the emphasis of SSIM and LPIPS
on perceptual similarity rather than geometric accuracy. In
contrast, as indicated in Table 3, our method surpasses the
TR Framework in all metrics for albedo prediction. Overall,
our approach offers a more precise and consistent estimation
of intrinsics.



Influence of pre-training data

Relit MAE| MSE] SSIM{ LPIPS |
Ours 0.1023 0.0275 0.002  2.137
w.MMAEH  0.0936 0.0237 09060  2.068
w.MMAEIM 0.0933 0.0235 0.9051  2.059

Table 4. The impact of pretraining and its dataset characteristics.

We investigate the influence of pre-training data charac-
teristics. We specifically pre-train on either human-specific
dataset (‘H’) or ImageNet (‘IM’), ensuring both datasets
approximately equal in size. The results in Table 4 reveal
that pre-training with ImageNet yields better results. This
suggests that using a broad dataset is more preferable to
task-specific data for learning transferable features for the
religthing task.

5. Visualization of estimated illumination

In Fig.2, we present a visualization of the light estimates as
inferred by Illum net. Specifically, we focus on one of the
four convolved HDRIs predicted by Illum net to represent
the light estimate, selecting the convolved HDRI character-
ized by a shininess exponent of p = 16. The light estimates
clearly reflect the directionality, color, and intensity of the
lighting conditions, illustrating the effective estimation capa-
bilities of Illum net.

6. Additional Qualitative Results

Further qualitative results are provided in Fig.3, 4, 5, 6, and
7. Each figure illustrates the relighting of a source image in
eight distinct target lighting environments. In these figures,
our approach is benchmarked against prior state-of-the-art
methods, namely SIPR [5], Lumos [6], and TR [4], utilizing
images from Pexels [1]. This comparison is enabled by the
original authors who applied their models to identical inputs
and provided their respective outputs.

We can clearly observe that our method demonstrates no-
table efficacy in achieving consistent lighting, maintaining
softness and high-frequency detail. Additionally, it effec-
tively manages specular highlights and hard shadows, while
meticulously preserving facial details, identity, skin tones,
and hair texture.

Source

Light estimate

Figure 2. Visualization of Light Estimates : Illum net accurately
captures the color, intensity, and directionality of lighting condi-
tions across various portraits
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Figure 3. Qualitative Comparisons with state-of-the-art approaches.
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Figure 4. Qualitative Comparisons with state-of-the-art approaches.
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Figure 5. Qualitative Comparisons with state-of-the-art approaches.
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Figure 6. Qualitative Comparisons with state-of-the-art approaches.
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Figure 7. Qualitative Comparisons with state-of-the-art approaches.
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