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Supplementary Material

A. Overview
In this material, we mainly provide three aspects: (1) training details, (2)
implementation details, and (3) additional analysis.

B. Extended Training and Inference
As referred to in Sec. 3.5, we describe a more detailed training loss, fol-
lowing the standard bipartite matching loss [4] denoted as Eq. (8). The
matched permutation indices, ⇡̂, play a pivotal role in this process, iden-
tifying the best match for each query to a ground truth instance or a ”no
action” class (?) in case of non-matching. The matched indices are com-
puted as follows:

⇡̂ = argmin

NqX

i=1

Lmatch(Ai, Â⇡(i)). (A)

The matched indices represent optimal one-to-one matching between the
predicted proposals and the ground truth targets using the bipartite match-
ing algorithm [12]. These matched pairs are utilized in the matching loss
Eq. (8) and formally defined as follows:

Lmatch(Ai, Â�(i)) =�clsLcls(ci, p̂
(LD)
⇡(i) )+

[ci 6=?][�regLreg(bi, b̂
(LD)
⇡(i) )],

(B)

where both bi and b̂⇡(i) contain start and end timestamps of ground truth
predicted segments. For the classification loss Lcls, we use the focal loss
[17], which effectively addresses the class imbalance issue. For the re-
gression loss, our model utilizes DIoU [36] (Ldiou) and log-ratio distance
for the width. DIoU evaluates the relative center distance and GIoU [24]
once, while the log-ratio compares the widths relatively. The regression
loss Lreg is formally defined as follows:

Lreg = Ldiou(bi, b̂
(LD)
⇡(i) ) + log

⇣
di/d̂

(LD)
⇡(i)

⌘
, (C)

where di is the length of the ground truth calculated by (ei � si)/2. The
log term represents the log-ratio of the widths, comparing the ground truth
width di with the predicted width d̂

(LD)
⇡(i) . This modified regression loss

term ensures that the relative scale of the ground truth and predicted seg-
ments are in the time-aligned coordinate expression.

C. Implementation Details
Environment All experiments are conducted using PyTorch 2.0.1 on a
single NVIDIA A6000 GPU.
Training Our TE-TAD is trained end-to-end with the AdamW [22] opti-
mizer. The initial learning rate is set to 0.0001, and the weight decay factor
is 0.05 for all datasets. Training durations are specified per dataset: THU-
MOS14 undergoes 150 epochs, EpicKitchens 80, and ActivityNet v1.3,
16. Learning rate decay is implemented towards the latter part of train-
ing: epoch 140 for THUMOS14, 70 for EpicKitchens, and 14 for Activ-
ityNet v1.3, with the decay factor being 0.1. Batch sizes are set to 8 for
THUMOS14, 32 for ActivityNet v1.3, and 4 for EpicKitchens.
Architecture The number of hidden dimensions in the transformer is 256
for THUMOS14 and 512 for both ActivityNet v1.3 and EpicKitchens. The
number of multi-scale levels, L, is configured as 8 for THUMOS14 and
6 for both ActivityNet v1.3 and EpicKitchens. The model architecture
includes four encoder layers and six (LD = 6) decoder layers. For the
AQS, the length of each sector, Tsector, is set to 128 for THUMOS14 and
64 for both ActivityNet v1.3 and EpicKitchens. Additionally, the number
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Figure A. Distribution of matching instability across video in-
stances: (a) shows TadTR-1 where higher frequency at the center
of the videos indicates instability due to normalized coordinates;
(b) presents Ours with a more uniform distribution and similar to
the distribution of the ground truth, suggesting less bias to coordi-
nate expression; and (c) shows the number of ground truth (GT)
instances.

Content Embedding Position Embedding
mAP@AVG

RAW w/NMS

Sine Embedding [37] 65.0 65.9
3 64.1 66.2

Learnable Query [33] 63.0 64.8
3 65.1 67.2

Encoder Memory 64.7 66.1
3 64.2 66.2

Gaussian Random 64.4 65.9
3 64.6 66.8

Zero Init 65.0 66.4
3 66.1 67.9

Table A. Comparative analysis of different query proposal meth-
ods on THUMOS14 for various content and position embedding
techniques, with and without the adoption of NMS.
of queries for each sector is set to 50 for all datasets, with a cap of 3000
max queries per video to maintain computational efficiency.
Others We adopt an exponential moving average similar to those used in
[27, 32] to mitigate overfitting. Following the previous implementation
[27], we employ a slight Gaussian noise to the input features. The noise
scales of standard deviation are set to 0.25 for THUMOS14 and EpicK-
itchens and 0.75 for ActivityNet v1.3.

D. Additional Analysis
Effect of Query Proposal Methods In the realm of query-based detec-
tion, the method of initializing queries for the decoder plays a pivotal role
in the model’s ability to accurately localize and classify actions. Build-
ing upon the foundations laid by two-stage query-based methods such as
Deformable-DETR [37] and DINO [33], we explore various query pro-
posal techniques and their influence on THUMOS14. Table A presents a
comparative analysis, revealing the mAP@AVG for different content and
position embedding strategies, both in raw form and when supplemented
by NMS. This examination allows us to discern the efficacy of each method
and its contribution to the robustness and precision of action detection.
Analysis of Coordinate Expression Bias In our experiments, we aim to
investigate where matching instabilities predominantly occur within the
video timeline. To conduct this analysis, we count the changed matching
permutations between proposals and ground truth across the entire training
((a) and (b)) and the number of ground truth instances (c) on THUMOS14.
To show the relative locations, we plot the center point of proposals and
ground truths, and we normalize timeline values between 0 and 1 to repre-



sent relative locations within the video. The distribution patterns depicted
in Fig. A elucidate the differences in stability and bias between our method
and TadTR-1. Our approach exhibits a more uniform distribution of the
center points across the timeline, indicating less instability and bias to-
wards the center of the video timeline compared to TadTR-1. In contrast,
using normalized coordinates in TadTR-1 contributes to its instability, as
seen in the skewed distribution towards the center points of the video time-
line. Especially, this skewed distribution at the center points of the video
timeline is affected by the non-uniform differentiation of the sigmoid func-
tion. Consequently, by aligning closely with the ground truth distribution,
our method shows its effective and unbiased temporal action detection, in-
dicating the robustness of our time-aligned coordinate expression.
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