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Supplementary Material

Here we provide extended details for TULIP data collec-
tion and analysis, offering comprehensive insights into the
methodologies employed throughout our study. These sup-
plementary materials aim to enhance the transparency and
reproducibility of our research by elaborating on key proce-
dures and techniques utilized.

Section 3. TULIP Dataset
Table 2 offers an in-depth look at the demographic and clini-
cal characteristics of the PD patients and the healthy control
individuals in our study cohort. The age of the subjects was
determined by calculating the interval between their date of
birth and the date of recording.

Parkinson’s Healthy
patients Control

n 10 5
Age (in years) 71.27 60.01

Sex (Female : Male) F6:M4 F4:M1
Time since the first

diagnosis of PD
(in years)

7.57 N/A

Paretic side
(Left : Right : Both) L3:R5:B2 N/A

Table 2. Demographics of TULIP dataset.

3.2. Dataset Structure

Sessions adhered to specific UPDRS guidelines, with tim-
ing enforced via a stopwatch. Subjects were instructed to
persist with the given task for the allotted time, even if they
completed the nominal task count. (as shown in Figure 7)

3.3. Data Collection

We designed the triggering system using microprocessor
and the hardware triggering cables. All of the cables were
positioned behind the camera so that the subjects can walk
and behave freely. Our triggering system was governed
by the campy algorithm [46], enabled simultaneous, stable,
and high-resolution data capture. All cameras recorded at
80 frames per second (fps) and a resolution of 1920 x 1200
pixels, with the exception of the first two subjects, whose
footage was captured at 75fps. To standardize, we applied
ffmpeg interpolation to upscale all footage to a consistent
80fps across the dataset. A white curtain backdrop at both
the start and end points of the walking area was installed
to ensure the clarity of limb movements, particularly the

hands. To enhance the visual contrast with the background,
subjects wore dark shirts during recording sessions. Cam-
era calibration is a critical step in keypoint extraction from
video data, particularly when using a multi-camera setup.
We employed a large charuco board to cover the extensive
recording area as shown in Figure 8, a standard practice for
large-space videography [68]. To generate camera calibra-
tion matrix, we captured the corner points of the charuso
board, and then confirmed that calibration was accurate be-
fore and after each recording session, within average 2 pix-
els for every cameras. Upon completing data acquisition,
we parsed the video footage by individual camera and spe-
cific activity. As a result, the TULIP dataset consists of 25
unique activities recorded from 15 subjects, each captured
simultaneously from six different camera perspectives.

3.4. Labeling

Our analysis of the videos yielded 29 unique MDS-UPDRS
Part III scores, encompassing a range of motor func-
tions. These include assessments like Finger Tapping,
Hand Movements, Pronation-Supination, Toe Tapping, Leg
Agility, Postural and Kinetic Tremor on both sides, Rest
Tremor Amplitude at upper and lower elbow for each arm,
Facial Expression, Arising from Chair, Gait, Freezing of
Gait, Postural Stability, Posture, Global Spontaneity of
Movement, Rest Tremor Amplitude for lip and jaw, Con-
stancy of Rest Tremor, Dyskinesias, and Hoehn and Yahr
Stage. The relationship between the 25 recorded activities
and these 29 MDS-UPDRS scores is detailed in Figure 9
and Figure 10. As mentioned in Section 1, individual UP-
DRS item scores exhibit variability. To quantify this, we
extracted UPDRS scores from each clinician and conducted
comparisons among them. The inter-clinician assessment
comparison is presented in Figure 11.

Clinician labeler details: each with extensive experience
in PD management and movement disorders. Clinician A,
a Neurology professor, has over 20 years of experience
with PD patients. Clinician B, also a Neurology professor,
has specialized in PD and movement disorders for over a
decade. Clinician C, with years of specialization in move-
ment disorders, complements the expertise of the team. All
clinicians hold board certifications in psychiatry/neurology
with a focus on PD and movement disorders.

Section 4. Analysis Methods
4.1. Pose Estimation

We used MediaPipe and MMPose for pose estimation, se-
lecting them for their robust tracking of different keypoints



Figure 6. Comparative analysis of TULIP with other datasets; ‘n.r.’ indicates unreported cases. ‘SAS’ stands for Simpson-Angus Scale for
measuring drug-induced parkinsonism symptoms, as referenced in [67].

Figure 7. Activities timing and instructions while recording TULIP dataset. Each time is from a single-side activity.

Figure 8. Arena dimensions and camera configuration for TULIP dataset recording.



Figure 9. Connection diagram illustrating the correlation between the TULIP dataset and UPDRS motor examination criteria, showing
how all UPDRS motor examinations are linked to our TULIP dataset.

Figure 10. Relationship between our dataset and the UPDRS criteria from the professional clinicians. ‘All’ means all activities were used
to judge the specific UPDRS score.



Figure 11. Comparison of clinician’s decisions to the gold standard for total UPDRS scores.

without needing custom fine-tuning. After extracting 2D
poses, we triangulated those poses to 3D poses. Then we
employed interpolation and smoothing since interpolation
addresses the issue of missing data, ensuring completeness,
while smoothing improves the quality of the data by reduc-
ing noise and erratic movements. Both are essential for
achieving a more accurate and lifelike representation of hu-
man poses in 2D and 3D space. We performed interpolation
to address outliers, and for smoothing, we used both Me-
dian and Savitzky-Golay filters, applying filter sizes of 25
and 17, respectively, for each filter.

4.2. Features for disease classification

4.2.1. Index finger tapping

In our paper, we present a detailed methodology for cal-
culating digital behavior markers derived from 3D and 2D
coordinate data during an index finger tapping activity. As
outlined in Section 4, we established 49 behavior markers
using 3D coordinates and 28 using 2D coordinates. Our
process began with calculating the angle and distance for
each frame, as illustrated in Figure 3. Utilizing these ba-
sic measurements, we computed additional features for both
2D and 3D data sets. These features include angular speed,
angular acceleration, and amplitude. Specifically for 3D
data, we further calculated wrist movements, opening ve-
locity, and closing velocity.

Furthermore, we enhanced the analysis of finger tapping
activities by extracting a range of statistical features from
the collected data. This included basic descriptive statistics
like the mean, minimum, maximum, median, and interquar-
tile range (IQR), which provide insights into the central ten-
dency and variability of the movement patterns. The stan-
dard deviation was used to quantify the amount of variation
or dispersion in the measurements. Additionally, we cal-
culated Shannon entropy, a measure of the randomness or
unpredictability in the data, which can be particularly infor-
mative in understanding the complexity of motor activities
[35].

To add further depth to our analysis, we incorporated
metrics such as the tapping period and tapping frequency.
These metrics are crucial for understanding the rhythmic as-
pects of finger tapping and have been previously utilized in
related research [35]. By integrating these time-based mea-
sures, we gained a more comprehensive view of the tempo-
ral dynamics of the tapping activity.

The complete methodologies and equations used to cal-
culate these features are as follows:

Angular Speed computes the angular speed of the finger
tapping movement by dividing the change in angle by the
change in time.

Angular Speed = |∆θ|/∆time (1)

Angular Acceleration computes the angular acceleration
by taking the first derivative of angular speed over time.

Angular Acceleration = |∆Angular Speed|/∆time.
(2)

Amplitude computes the amplitude of the tapping mo-
tion at the local maxima points of the distance between the
thumbtip and index fingertip.

Wrist Movement calculates the movement of the wrist by
taking the difference in 3D coordinates.

Wrist Movement =
√

∆x2 +∆y2 +∆z2 (3)

Opening Velocity and Closing Velocity separate the ve-
locities into opening (positive velocities) and closing (neg-
ative velocities) phases of the finger tapping movement.

Tapping Points identify the local minima and maxima
in the distance between the thumbtip and index fingertip,
indicative of tipping points in the tapping motion.

Tapping Period calculate the time period between suc-
cessive tapping points.

Tapping Frequency measures the frequency of the tap-
ping action by calculating the inverse of the duration be-
tween consecutive tapping points.



Figure 12. Spatio-temporal and kinematic features for finger tap-
ping activity that can be generated from 2D and 3D coordinates.

Aperiodicity computes the aperiodicity of the finger
movement using the power spectrum of the Fast Fourier
Transform (FFT) and entropy.

Number of Interruption identify interruptions in the tap-
ping movement.

Number of Freezing detects instances where the tapping
motion temporarily halts.

Longest Freezing Duration finds the longest freezing du-
ration among the tapping moments.

Complexity of Fitting Periods evaluate the linearity and
complexity of the tapping periods using linear regression
and polynomial fitting. This comprehensive approach al-
lowed us to capture a multi-faceted understanding of the
finger tapping activity, taking into account both the spatial
and temporal characteristics of the movement as shown in
Figure 12.

4.2.2. Gait

Mirroring the approach utilized for index finger tapping,
we obtained both 2D and 3D features from gait activities.
Specifically, for the extraction of 2D features, a side-view
camera was employed due to its proficiency in delineating
gait events with clarity. Since we only used one camera
in this case, we had to treat that camera view as the ideal
side plane, which is assumed to be parallel to the walking
direction and vertical to the ground, to split walking bouts
and calculate gait events despite potential angle-related er-
rors. To split each linear walking bout, we utilized the walk-
ing direction changing timepoints to split the whole gait se-
quence. The walking direction was calculated from the hip

trajectory. Since subjects walked along the x-axis (horizon-
tal dimension) in the frame, changes in walking direction
were determined by the difference between subsequent hip
x-values and the initial one. Heel-strikes and toe-offs were
pinpointed based on the extremas in the anterior-posterior
trajectories of the heels and toes relative to the hip point,
which is a common method used in gait analysis [62]. For
3D features, we computed 25 features, encompassing tem-
poral, spatial, and kinematic aspects. For each feature, we
also calculated seven statistical values as independent fea-
tures. The complete list of extraction features is presented
in Figure 13 of the supplementary material. For temporal
features, We denoted the frame numbers as fhj and ftj for
the frame number of jth occurrence of the heel-strike and
toe-off events, respectively. Step Time is the time interval
between successive heel strikes of opposing feet. It’s com-
puted as

tstep =
fhj+1 − fhj

fps
(different feet) (4)

where fps is the frame rate of the video.
Stride Time is the time taken for a complete cycle of one

foot, meaning the duration between two consecutive heel
strikes of the same foot:

tstride =
fhj+2 − fhj

fps
(same foot) (5)

Stance Time is the duration from a foot’s heel strike to
its toe-off, during which the foot remains in contact with
the ground:

tstance =
ftj+2 − fhj

fps
(same foot) (6)

Swing Time is the period from a foot’s toe-off to its next
heel strike, while the foot is in the air:

tswing =
fhj+1 − ftj

fps
(same foot) (7)

Single Support Time means the period where one leg
bears the body’s weight. The Single Support Time for the
right foot is equivalent to the left foot’s Swing Time, and
the reverse applies.

Double Support Time is when both feet are on the
ground, beginning at one foot’s heel strike and ending at
the opposite foot’s toe-off.

tdouble−support =
ftj+1 − fhj

fps
(different feet) (8)

Cadence is calculated by the number of steps taken in
one minute. It’s determined by dividing the total number
of steps by the total duration of the stepping phase within



a straight-line walking period, then multiplying by 60 sec-
onds to convert to a per-minute measurement.

Kinematic features are also easy to monitor continu-
ously based on the skeleton coordinates information we
gathered. These values are calculated as follows: Ankle
angle is determined by measuring the angle between the
ankle-knee segment and the ankle-toe segment. Knee an-
gle is determined by measuring the angle between the knee-
ankle segment and the knee-hip (ipsilateral) segment. Hip
angle is determined by measuring the angle between the z-
vector and the knee-hip (ipsilateral) segment. Leg angle is
determined by measuring the angle between the left knee-
hip (ipsilateral) segment and the right knee-hip (ipsilateral)
segment.

Spatial gait features provide critical insights into the
biomechanics of an individual’s walk and are particularly
useful when assessing gait abnormalities in PD patients.
These 3D features as shown in Figure 14 were calculated:
Step Length refers to the distance traveled during a single
step, measured as the linear distance between successive
heel strikes of alternate feet. We determined the walking
direction for each straight-line walking period via linear re-
gression using the coordinates of the left and right heels.
Subsequently, the two successive horizontal heel coordi-
nates along the walking direction were projected and the in-
tervening distance was calculated as the step length. Stride
Length is measured as the linear distance between two suc-
cessive heel strikes of the same foot, essentially the length
of a full gait cycle. Step Width is the lateral distance be-
tween the points of successive heel strikes of different feet.
Average Velocity is computed by dividing the total distance
moved by the duration of walking for a straight-line walking
period, providing an average speed of movement.

4.3. Statistical Analysis and Modeling

In our downstream classification task, we employed a
LOSO cross-validation paradigm to split the subjects. This
approach aligns with methodologies used in previous re-
search [35]. For the finger-tapping task, we combined data
from both the left and right hands to increase the sample
size. We divided our subjects into a training set (n=14) and
a testing set (n=1), and conducted classifications based on
each clinician’s labels. The model’s output was processed to
obtain class probabilities. Concurrently, we generated bias
matrices by comparing each clinician’s labels with the gold-
standard labels, using confusion matrices. To correct the
probabilities based on clinician-specific models, we multi-
plied the bias matrices with the respective clinician’s class
probabilities, as illustrated in Figure 4. This process, out-
lined in Section 4, is a standard approach to mitigate labeler
bias. The final classification decision was made using the
argmax function, and the results were compared with the

Figure 13. Spatio-temporal and kinematic features for gait activity
that can be derived from 2D and 3D coordinates.

Figure 14. Gait spatial feature extraction.

gold standard labels to determine accuracy. This strategy
not only ensures a comprehensive evaluation of the model’s
performance but also accounts for potential biases in clin-
ician labeling, leading to a more reliable and robust clas-
sification outcome. For modeling, we have used these hy-
perparameters; for our model hyperparameters, we used the
following configurations: SVM with an RBF kernel and
gamma set to 1 divided by the number of features, Ran-
dom Forest with 100 estimators and ‘entropy’ as the cri-
terion, AdaBoost with 50 estimators using the SAMME.R
algorithm, XGBoost with a maximum depth of 6, and Light-
GBM with 31 leaves, 100 estimators and min child samples
as 20. For the neural network, we employed three fully
connected layers with 16, 16, and number of classes (5 for
the UPDRS scores, 2 for detecting PD and healthy) output
channels, utilizing ReLU activation functions for finger tap-
ping activity and 6, number of classes output channels with
tanh activation function for gait activity. We applied the
Adam optimizer with learning rate of 0.001 in both scenar-



ios.

Section 5. Results
5.1. Dataset validation

To verify the accuracy of our 3D triangulation process, we
measured the bone lengths using the triangulated 3D coor-
dinates. We selected specific bones for measurement: the
last knuckle of the resting hand’s last finger during finger
tapping, and the spine during gait activity. We then cal-
culated the standard deviation of these bone lengths across
different frames for each subject. The results showed that
the standard deviation for all subjects was under 20mm, as
depicted in the Figure 15 and Figure 16.

Figure 15. Validation of 3D poses for finger tapping activity using
bone length analysis. (Green bars) denote average values per sub-
ject, while (red line) signifies standard deviation per subject.

Figure 16. Validation of 3D poses for gait activity using bone
length analysis.

The small standard deviation in bone lengths, relative to

their average values, indicates high precision in the mea-
surements. This precision is further evidenced by the Coef-
ficient of Variation (CV) values for both finger tapping and
gait activities. CV can be calculated using the ratio of the
standard deviation to the mean times 100. In our dataset,
we got CV=0.37, 0.52, 0.58, and 8.26 for spine, lower left
leg, lower right leg, and resting hand’s lastfinger knuckle for
finger tapping activity. Moreover, we got CV=1.46, 3.45,
3.47, 2.26, and 2.17 for spine, upper left leg, upper right
leg, upper left arm, and upper right arm for gait activity.
The exceptionally low coefficients of variation (CV), most
of which are below 4 and all of which are below 10, suggest
that the variability in bone length measurements is mini-
mal compared to the average bone length. This observation
also implies that the 3D triangulation process employed for
pose estimation is highly reliable and accurate. Essentially,
the consistency in bone length measurements across differ-
ent frames and subjects indicates that the 3D triangulation
method produces stable and trustworthy results. This con-
sistency is crucial in applications where precise measure-
ments of body movements and dimensions are necessary,
such as in biomechanical analysis, sports science, and medi-
cal diagnostics. Furthermore, we have employed human an-
notators to validate pose tracking, resulting in a mean key-
point error of 21mm for finger tapping and 56mm for gait
(equivalent to 22 and 16 pixels of 2D error, respectively).
For comparison, the CMU Panoptic [69] error stands at 62.5
mm, while a typical knee-ankle distance measures approxi-
mately 400mm.

5.2. Feature Extraction

5.2.1. Index finger tapping

Our analysis identified significant differences between PD
patients and healthy controls, especially in the periodic pat-
terns of angle and fingertip distances. These distinctions are
visually detailed in Figure 17. Variations in these periodic
patterns suggest differences in motor control and coordina-
tion between the groups, offering insights into the motor
impairments associated with PD.

In our study, a cross-relational analysis was conducted
to streamline the feature set by eliminating redundancy. We
employed Pearson’s correlation test, setting a threshold at
0.85, to identify and remove features that were highly corre-
lated and thus potentially redundant. Post-analysis, our fea-
ture set was refined to 20 distinct features for 3D data and 14
for 2D data. The selected features are angular speed (me-
dian), number of freezing, angular speed (entropy), wrist
movement (max), amplitude (median), aperiodicity, ampli-
tude (entropy), angular acceleration (min), amplitude (std),
angular speed (min), complexity of fitting periods, ampli-
tude (min), angular acceleration (max), amplitude (IQR),
longest freezing duration, wrist movement (mean), wrist
movement (min), closing velocity (max), wrist movement



Figure 17. Feature plot for finger tapping activity: blue lines represent healthy subjects, while red lines represent PD subjects.

(median), opening velocity (min) for 3D and longest freez-
ing duration, angular speed (entropy), angular speed (max),
number of freezing, amplitude (min), aperiodicity, ampli-
tude (median), angular speed (median), amplitude (IQR),
angular acceleration (max), amplitude (entropy), complex-
ity of fitting periods, angular speed (min), angular accel-
eration (min) for 2D, where min denotes minimum, max
denotes maximum, std denotes standard deviation.

5.2.2. Gait

We observed an obvious difference between PD patients and
healthy controls in left ankle angle, left hip angle, right hip
ankle, and right knee angle as shown in Figure 18. These
plots also support the opinion that PD patients have a lim-
ited range of motion on multiple joints.

Our feature set for gait analysis was refined to 57 dis-
tinct features for 3D data and 45 for 2D data. The selected
features are left step duration (min, mean, std, IQR), right
step duration (std, IQR), left stride duration (IQR), right
stride duration (std), left single support time (min, IQR),
right single support time (IQR), double support time (min,

IQR), left stance time (IQR), right stance time (IQR), ca-
dence (IQR), left ankle angle (min, mean, std, IQR), right
ankle angle (max, min, mean, IQR, std), left knee angle
(max, min, mean, std, IQR), right knee angle (min, max,
std, IQR), left hip angle (min, mean, std, CV), right hip
angle (min, mean, std, CV), leg angle (min, CV), left step
length (min, mean, std, IQR), right step length (min, std),
step width (min, max, mean, std), and average velocity
(mean, std, IQR) for 3D and left step duration (min, mean,
std, IQR), right step duration (std, IQR), left stride dura-
tion (std, IQR), right stride duration (std, IQR), left sin-
gle support time (min, IQR), right single support time (min,
std, IQR), double support time (std, IQR), right stance time
(IQR), cadence (std, IQR), left ankle angle (max, min, mean,
std), right ankle angle (min, std), left knee angle (max, min,
mean, std, IQR), right knee angle (min, max, mean, std),
left hip angle (max, min, mean, std, IQR), right hip angle
(mean, std), and leg angle (max, min, CV) for 2D, where
min denotes minimum, max denotes maximum, std denotes
standard deviation, IQR denotes interquartile range, and CV
denotes coefficient of variation.



Figure 18. Feature plot for gait activity: blue lines depict healthy subjects, and red lines depict PD subjects. The shaded region indicates a
95% confidence interval throughout the gait cycle.

5.3. Modeling performance

Firstly, as shown in Figure 19, variations are observed
among clinicians’ UPDRS scores, even though most clin-
icians correctly identify PD patients. More specifically, for
the finger tapping activity (Figure 20), clinicians achieved
accuracy rates of 80%, 70%, and 86.7%, respectively, com-
pared to their gold standard. Our framework attained a 70%
accuracy for UPDRS score prediction and 86.7% for detect-
ing PD patients based solely on their finger tapping activity,
which is competitive with the clinicians. Moreover, in the
comparison of diverse models, as depicted in Figure 21, em-
ploying 3D features exhibits notably better performance as
opposed to the use of 2D features.

Similarly, for the gait activity, our model achieved a 73%
accuracy rate, tying for the highest with the clinicians’ per-
formance as illustrated in Figures 22. Given that UPDRS
score prediction using gait activity has been a challenging
task in previous research, our framework offers a promis-

ing solution for accurate prediction. Furthermore, like the
finger tapping activity, when comparing various models, as
shown in Figure 23 the utilization of 3D features demon-
strates significantly superior performance in contrast to us-
ing 2D features. This finding underscores the significance
of our framework. In conclusion, these results highlight the
efficacy of our framework in predicting UPDRS scores and
detecting PD, showcasing its potential as a reliable tool in
clinical settings. More specifically, we believe our TULIP
dataset and framework can provide clinicians with objec-
tive and quantitative criteria, and also reveal novel digital
biomarkers for behavior analysis.



Figure 19. Inter-rater agreement among clinicians for total UPDRS score

Figure 20. [Finger tapping activity] Confusion matrices comparing the gold standard labels with clinicians’ assessments and the model’s
outcomes for finger tapping activity.

Figure 21. [Finger tapping activity] Classification outcomes among different models, where the shaded region indicates the utilization of
3D characteristics.



Figure 22. [Gait activity] Confusion matrices with contrasting the gold standard labels with clinicians’ assessments and the model’s
predictions.

Figure 23. [Gait activity] Classification results across various models, with the gray area representing the use of 3D features.


	. Introduction
	. Previous work
	. Machine learning for neurological disorders
	. PD datasets

	. TULIP Dataset
	. Clinical motivation
	. Dataset structure
	. Video collection
	. UPDRS Labeling

	. Analysis Methods
	. Pose Estimation
	. Features for disease classification
	Index finger tapping
	Gait


	. Results
	. Clinician agreement
	. Disease classification
	Modeling details
	Index finger tapping
	Gait


	. Discussion
	. Conclusion

