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Supplementary Material

A. Additional Related Work

Text-to-Image Generative Models Recent advance-
ments in vector quantization and diffusion modeling have
significantly enhanced text-to-image (T2I) generation, en-
abling the creation of hyper-realistic images from textual
prompts [16, 20–22]. These T2I models have been effec-
tively utilized in various tasks such as generating images
driven by subject, segmentation, and depth cues [2, 3, 6, 11,
18]. However, the substantial size of these models presents
a challenge for broader user adoption. Research efforts are
focusing on enhancing model efficiency through knowledge
distillation, step distillation, architectural optimization, and
refining text-to-image priors [12, 15, 19, 23]. Amidst these
technological advancements, ensuring the responsible us-
age of these powerful tools is a critical area of focus, which
is the aim of our proposed method.

Image Watermarking Image watermarking aims to em-
bed a watermark into images for asserting copyright owner-
ship. To maintain the original image’s fidelity, these water-
marks are embedded imperceptibly. Traditional approaches
often employ Fourier or Wavelet transforms, while recent
advancements leverage deep neural network-based auto-
encoders for this purpose [26, 29, 30]. However, as dis-
cussed in the main paper, these methods can be easily dis-
abled in an open-source setting.

From the standpoint of ownership verification, the fin-
gerprinting of generative models aligns conceptually with
watermarking techniques. However, unlike direct image
manipulation to embed an identifiable signal in watermark-
ing, generative model fingerprinting embeds this signal
within the model’s weights. Consequently, the identifi-
able signal is integrated during the image generation pro-
cess, akin to leaving fingerprints. This approach inherently
prevents users from dissociating the fingerprinting process
from image generation.

Neural Network Watermarking Watermarking tech-
niques, particularly those embedding unique identifiers
within model parameters, have been substantively explored
in various studies, such as those highlighted in [1, 4, 17, 27,
28]. Our methodology, while aligning with the foundational
principles of these works, introduces notable advancements
in several key areas: utility, scalability, and verification
methodology. The majority of existing watermarking tech-
niques are tailored towards image classification models,

with only a limited subset extending their applicability to
generative models, each presenting its own set of limita-
tions. Unlike traditional methods that predominantly tar-
get single classification models, our approach endeavors to
fingerprint approximately 4 billion Text-to-Image genera-
tor instances through a singular fine-tuning process. Ad-
ditionally, while prior works have embedded fingerprints
into various model aspects, such as input-output dynam-
ics [1, 17] or directly within model weights [4, 27, 28], our
strategy diverges by eliminating the necessity for trigger in-
put, thereby enhancing scalability. In the context of our
problem domain, where malicious users rarely share their
model weights with the distributor responsible for water-
mark verification, the distributor typically only has access
to potentially misused images. In essence, our approach not
only aligns with but also extends beyond the conventional
boundaries of network watermarking techniques, ensuring
a thorough inclusion and discussion of these foundational
methods in our related works section.

B. Additional Details

WOUAF is evaluated utilizing the Stable Diffusion (SD)
model [21] (version 2-base), trained specifically for gener-
ating images of 512p resolution.

C. Additional Experimental Results

In addition to the figure in the main paper, we added uncu-
rated images using text-prompt from MS-COCO [13] and
LAION Aesthetics [24]. For convenience, we have aligned
the subsection names with those in the main manuscript.
Unless otherwise specified, all figures were generated using
the ‘WOUAF-all’ method.

C.1. Additional Training Details

The dimension of the mapping network dM is set to be equal
to 4 ∗ dϕ across all experimental setups. Training is per-
formed over 50K iterations with a batch size of 32 and a
learning rate of 10−4 using AdamW optimizer [14].

C.2. Attribution Accuracy and Image Quality

As highlighted in the main manuscript, our methodology
has a negligible effect on the original Stable Diffusion’s im-
age quality. Please refer to Fig. 1 for these uncurated im-
ages.
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Figure 1. Uncurated images of the original and fingerprinted Stable Diffusion models on MS-COCO and LAION Aesthetics. Pixel-wise
differences are multiplied by a factor of 5 for a better view.

C.3. Evaluating Generalizability Across Datasets

A key feature of our proposed methodology is its design in-
dependence from image-text paired datasets for achieving
attribution accuracy. This property imbues it with the po-
tential for broad applicability across a diverse range of con-
texts. To substantiate this claim, we conducted an experi-
ment in which our variant models were trained exclusively
on the ImageNet dataset [5]. We subsequently evaluated the
performance of these ImageNet-trained models on the MS-
COCO test set as well as a randomly selected portion of the
LAION-aesthetics datasets.

The evaluation results, as seen in Table 1, effectively
corroborate our assertion. Our methodology demonstrates
compelling performance, with both our variants, achiev-
ing high attribution accuracy and maintaining image gen-
eration quality. These results underscore our method’s in-
dependence from the use of text-image paired datasets,
thereby establishing its broad applicability in diverse sce-
narios where reliable fingerprinting and high-quality image
generation are required. Fig. 2 provides a visual representa-

tion of these images.

C.4. Attribution Accuracy Across Various Genera-
tion Hyperparameters

In accordance with the details provided in the primary
manuscript, we subjected our methodology to evaluation
employing two widely accepted schedulers: Euler [10], fea-
turing time steps at intervals of [15, 20, 25], and DDIM [25],
operating at time steps in [45, 50, 55]. Along with these, we
also incorporated classifier-free guidance scales [9] at 2.5,
5.0, and 7.5.

Echoing the discussions in the main paper, the data in
Tab. 2 and 3 corroborate the near-perfect attribution accu-
racy achieved by our method. Furthermore, the absence of
significant deterioration in quality metrics reaffirms the re-
silience of our approach in the face of diverse generation
hyperparameters (Refer to Fig. 3 and Fig. 4).

C.5. Benefits of Finetuning only Decoder

In this section, we present qualitative outcomes resulting
from the joint fine-tuning of the Stable Diffusion model’s
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Figure 2. Qualitative comparisons of the original and fingerprinted Stable Diffusion models that were fine-tuned using only the ImageNet
dataset. Pixel-wise differences are multiplied by a factor of 5 for a better view.

Table 1. Assessment of attribution accuracy and generation quality using Imagenet trained models. We validated our method using MS-
COCO testset and LAION-aesthetics dataset. ↑/↓ indicates higher/lower is desired.

Model
MS-COCO LAION

Attribution Acc.
(↑)

Clip-score (↑) FID (↓) Attribution Acc.
(↑)

Clip-score (↑) FID (↓)

Ours-conv. 0.99 0.73 24.23 0.99 0.51 19.71
Ours-all 0.99 0.73 24.41 0.99 0.51 19.46

components, diffusion model ϵθ and decoder D. As ac-
centuated in the primary manuscript, our training proto-

col achieved an accuracy of 89%, however, it resulted in
a noticeable deterioration in the quality metrics (Clip-score:



Table 2. Assessment of attribution accuracy and generation quality using Euler and DDIM scheduler with different time steps on MS-
COCO. We fixed classifier-free guidance scale [9] to 7.5. ↑/↓ indicates higher/lower is desired.

Model
Euler [10] DDIM [25]

Steps Attribution
Acc. (↑)

CLIP-
score (↑)

FID (↓) Steps Attribution
Acc. (↑)

CLIP-
score (↑)

FID (↓)

Original SD [21] 20 - 0.73 24.48 50 - 0.73 23.33

WOUAF-conv
15 0.99 0.73 24.63 45 0.99 0.73 23.28
20 0.99 0.73 24.43 50 0.99 0.73 23.35
25 0.99 0.74 24.14 55 0.99 0.73 23.31

WOUAF-all
15 0.99 0.73 24.65 45 0.99 0.73 23.34
20 0.99 0.73 24.42 50 0.99 0.73 23.29
25 0.99 0.73 24.11 55 0.99 0.73 23.26

Table 3. Assessment of attribution accuracy and generation quality on different classifier-free guidance scales [9] using MS-COCO. We
fixed the scheduler and time steps to Euler for 20 steps and DDIM for 50 steps. ↑/↓ indicates higher/lower is desired.

Model
Guidance Scale 2.5 Guidance Scale 5.0

Scheduler Attribution
Acc. (↑)

CLIP-score
(↑)

FID (↓) Scheduler Attribution
Acc. (↑)

CLIP-score
(↑)

FID (↓)

WOUAF-conv
Euler 0.99 0.72 18.63 Euler 0.99 0.73 21.91
DDIM 0.99 0.72 18.35 DDIM 0.99 0.73 20.78

WOUAF-all
Euler 0.99 0.71 18.64 Euler 0.99 0.73 21.89
DDIM 0.99 0.71 18.31 DDIM 0.99 0.73 20.68

0.68, FID: 63.48). Fig. 5 provides additional visual affirma-
tion of these quantitative results.

C.6. Robust User Attribution against Image Post-
processes

We conducted a thorough evaluation of quality metrics to
assess the impact of our robust user attribution training
on various image post-processing methods. Examples of
images post-processed using these methods are displayed
in Fig. 6. As indicated in Tab. 4 and Tab. 5, our robust
fine-tuning approach generally preserves image quality with
only minimal perturbations. A representative example un-
der a JPEG attack, generated by our robust model, is show-
cased in Fig. 7. Additionally, our method demonstrates
adaptability under Combination attacks, which significantly
challenge image fidelity. As illustrated in Fig. 6, these com-
bined post-processing techniques necessitate a relatively
stronger fingerprint compared to single post-processes, as
further detailed in Fig. 8. Moreover, it is observed that im-
ages subjected to extensive post-processing lose perceptual
value, impacting both malicious and naive users alike.

D. Additional Deliberate Fingerprint Manipu-
lation

D.1. Gaussian Noise Model Purification

This subsection addresses the scenario where an adversary,
upon recognizing the presence of fingerprints within the im-
ages generated by the image decoder D, opts to add Gaus-
sian noise into D to obliterate the embedded fingerprint. In
order to test this scenario, we gradually increase the stan-
dard deviation following [0., 0.01, 0.015, 0.02, 0.025, 0.03].
As shown in Fig. 10, our empirical analysis reveals a signif-
icant challenge: efforts to decrease the attribution accuracy
lead to a decline in the quality of the generated images. This
result also supports the idea that efforts to decrease attribu-
tion accuracy lead to a significant decline in the quality of
the generated images.

D.2. Full Knowledge Attack Scenario

This scenario assumes an internal attacker with comprehen-
sive knowledge of our training process, including the train-
ing dataset, model structure, fingerprint space, and training
details. To validate this, we trained an attacker’s version,
following our methodology but employing a different ran-
dom seed. We then assessed user attribution accuracy by
inputting 5K images generated by the attacker’s model into
WOUAF-conv and WOUAF-all fingerprint decoding net-
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Figure 3. Qualitative results obtained using the Euler and DDIM schedulers with varying time steps on the MS-COCO dataset. We
maintained a constant classifier-free guidance scale [9] at 7.5. Each column corresponds to the ’WOUAF-all’ rows in Table 2.

Table 4. FID [8] scores using MS-COCO after robust training. Lower is desired.

Model Crop Rotation Blur Brightness Noise Erasing JPEG Combi.

WOUAF-conv
24.02 24.05 23.80 24.14 23.96 24.16 24.42 26.80

(robust)
WOUAF-all

24.35 23.92 24.18 24.54 24.24 24.48 24.41 26.85
(robust)

works. Both of our model variants exhibited user attribution
accuracies of 0.509 and 0.501, which are essentially random
guesses, and thus dodged the attack. Even when an attacker
with complete knowledge replicates our methodology, they

will not be able to mislead the original fingerprint decoding
network.



Table 5. CLIP scores [7] using MS-COCO after robust training. Higher is desired.

Model Crop Rotation Blur Brightness Noise Erasing JPEG Combi.

WOUAF-conv
0.716 0.717 0.716 0.716 0.712 0.717 0.714 0.702

(robust)
WOUAF-all

0.719 0.717 0.718 0.718 0.710 0.718 0.716 0.704
(robust)
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Figure 4. Qualitative results produced by applying different classifier-free guidance scales [9] on the MS-COCO dataset. The scheduler
and time steps were held constant at Euler for 20 steps and DDIM for 50 steps. Each column aligns with the ’WOUAF-all’ rows in Table 3.
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Figure 5. Qualitative results of the original and fingerprinted Stable Diffusion models on MS-COCO and LAION Aesthetics. When fine-
tuning the SD model’s ϵθ and D together, there are significant quality drops. Pixel-wise differences are multiplied by a factor of 5 for a
better view.
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Figure 7. Qualitative results of the original and fingerprinted Stable Diffusion models on MS-COCO and LAION aesthetics. Our finger-
printed model is trained by simulating JPEG compression during training. Pixel-wise differences are multiplied by a factor of 5 for a better
view.
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Figure 8. Qualitative results of the original and fingerprinted Stable Diffusion models on MS-COCO and LAION aesthetics. Our finger-
printed model is trained by simulating all the combinations of the post-processing during training. Pixel-wise differences are multiplied by
a factor of 5 for a better view.
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Figure 9. Qualitative results of the original and fingerprinted Stable Diffusion models (WOUAF-conv) on MS-COCO. Pixel-wise differ-
ences are multiplied by a factor of 5 for a better view.
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Figure 10. Model Purification. Adding Gaussian noise into
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