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Supplementary Material

A. Time & Wavelength Gating in Lidar
As described in the main text, PlatoNeRF (and lidar-based
methods) offer fundamental advantages over RGB-based
methods in practical scenarios with uncontrolled scene albe-
dos and ambient illumination. Lidars can leverage their pi-
cosecond timing resolution for time gating to enhance signal-
to-background ratio (SBR) of measured shadow images. In
addition, unlike RGB sensors, lidar sensors do not require
wideband spectral sensitivity. Therefore, ambient illumina-
tion that has different wavelength than that of the laser’s can
be suppressed using wavelength gating.

The principle of time gating is illustrated in Fig. 1. A
measured lidar signal i(t) can be decomposed into the pulse
signal s(t) and (roughly) constant ambient background noise
n(t) = N . An RGB sensor would integrate over this timing
information and measure

i =

∫ T

0

i(t)dt =

∫ T

0

s(t) + n(t)dt (1)

=

∫ T

0

s(t)dt+NT, (2)

where T is the length of the transient signal. The measure-
ment i results in a SBR of

SBR =

∫ T

0
s2(t)dt

N2T
(3)

On the other hand, a lidar sensor would only use relevant
parts of the transient, i.e., around the signal peak. A time-
gated lidar would therefore measure

i =

∫ T2

T1

s(t)dt+NT, (4)

with SBRgated =

∫ T2

T1
s2(t)dt

N2W
, (5)

where T1 and T2 determine the gated window in the transient
signal and W = T2 − T1 is the window size. Note that the
numerator of Eq. (3) is roughly the same as the SBR in
Eq. (5) because s(t) ≈ 0 for t < T1 and t > T2, as shown in
Fig. 1(a). Therefore, time gating offers an SNR improvement
of T

W over techniques that leverage RGB or intensity signals.
Note that the SBR enhancement is inversely proportional
to the gated window. We do not account for Poisson noise
effects, which, in practice, would introduce trade-offs in

determining the window size. Empirical results are plotted
in Fig. 1(b)-(d) on the effects of time gating on enhancing
contrast in shadow images.

A similar idea can be applied to gate wavelengths. Most
of the signal will be concentrated within a narrow spectral
range, and all other intensities can be gated out with a narrow-
band pass filter, as shown in Fig. 2. This figure plots the
emission spectra of an LED light [4] and the gating profile
is determined by a 685 nm PicoQuant pulsed laser [3].

B. Simulated Dataset Details

In this section, we describe the simulated datasets that we
render and use to compare our method to past work in more
detail. We render four simulated scenes, as described in the
main text, with both a lidar and RGB camera in Mitsuba [2].
The lidar data is used to run PlatoNeRF and Bounce Flash
(BF) Lidar [1] and the RGB data is used to run S3-NeRF
[6]. The same sixteen scene points are illuminated in both
the lidar and RGB data. In the lidar data, the sixteen points
are illuminated with a laser and, in the RGB data, point light
sources are placed at each of the sixteen points. A camera
to world transform from OpenGL (x right, y up, z back) to
Mitsuba (x left, y up, and z forward) is used to train each
method with this data. Ground truth depth for both the train
view and 120 test views are provided. A subset of the test
view frames are shown in the video results on the project
page. All data has been released for use in future work.

Lidar Data. The lidar (direct time of flight) data is ren-
dered at 512× 512 spatial resolution with a temporal reso-
lution (bin size) of 128 ps. We simulate a laser by using a
spot light source and setting the cutoff angle as 0.2 and the
beam width as 0.1. To choose the illumination points, we
randomly illuminate twenty four points in the scene and then
heuristically choose sixteen that maximize diversity.

RGB Data. To compare with S3-NeRF, we render each
scene with both lidar (to run our method) and RGB (to
run S3-NeRF) in Mitsuba. When rendering with RGB, we
compute the location of the scene point where the laser first
hits the scene and place a point light source at this location.
By placing point light sources at the same location as where
the laser hits the scene, we ensure the same shadows are cast
in the scene in both the lidar and RGB data. RGB images
are rendered with max depth to set to 2, ensuring only first-
bounce light is rendered, as required by S3-NeRF. Rendered
images are gamma corrected prior to training.



Figure 1. Time Gating with Lidar. (a) A transient is plotted at a single pixel. Note that most of the signal (blue) is concentrated within a few
timing bins ∼ 20 ns. By only gating a window (green) around the signal, most of the noise profile (red) can be suppressed. (b)-(d) Measured
intensity images without time gating (b, c) and with time gating (d).

Figure 2. Wavelength Gating. Ambient illumination under an
LED light is compared to the spectral gating window needed for a
spectral window centered at 685 nm. Figure adapted from [4].

C. Training Details

Reproducibility. We have released all data, code, and
model checkpoints, along with documentation, to ensure
our work is fully reproducible by others. These can be ac-
cessed from our project webpage. Simulated data is rendered
in Mitsuba world coordinates and PlatoNeRF uses OpenGL
camera coordinates. Code for simulating time of flight mea-
surements in Mitsuba is also provided.

PlatoNeRF. We train our model for 200k iterations. For
the first 25k iterations, only the distance loss is applied,
while both the distance and shadow losses are applied there-
after. We use a threshold of 15% on the shadow confidence
map (computed as the maximum of the cross-correlation de-
scribed in Sec 3.3 of the main text) when extracting ground
truth shadow masks from the raw lidar measurements. This
threshold is used across all experiments, except the ambient
light experiment, where we further tune it.

Table 1. Ablations on Number of Illumination Points. We study
how varying the number of illumination points between two and
sixteen impacts PlatoNeRF reconstruction quality.

Illumination Spots
PlatoNeRF

# Spots L1 (m) PSNR (dB)
16 0.0862 26.58
8 0.0912 26.33
4 0.1347 25.15
2 0.2147 21.61

Bounce Flash Lidar. Bounce Flash (BF) Lidar consists of
two steps: (1) estimating visible geometry via constraints on
ellipsoidal geometry, and (2) estimating occluded geometry
with shadow carving. For each scene, we run a grid search
over thresholds for shadow extraction and occupancy proba-
bility (applied to the occupancy probabilities predicted from
shadow carving) to maximize BF Lidar accuracy.

S3-NeRF. We found the default training parameters pro-
vided for S3-NeRF work the best on our data. We only mod-
ify the light intensity parameter to match our rendered data
when training. When training with ambient light, we run a
grid search over the ambient light intensity (amb i) param-
eter to maximize S3-NeRF reconstruction quality, but find
that under a reasonably high ambient area light, S3-NeRF is
not able to reconstruct the scene regardless of this parameter.

D. Extended Ablations

In this section, we add further detail and discussion on the
results of our ablations, quantitatively reported in the main
text. In addition, we provide further ablation on the impact
of non-planar background geometry (Fig. 5), the number of
illumination points (Tab. 1), and the shadow mask threshold
(Fig. 7) on PlatoNeRF reconstruction.

https://platonerf.github.io


Figure 3. Spatial- and Temporal-Resolution Ablation. We compare PlatoNeRF and Bounce Flash (BF) Lidar as spatial- and temporal-
resolution is reduced. PlatoNeRF continues to produce smooth geometry in both cases, whereas BF Lidar produces sparse geometry when
spatial resolution is reduced and bumpy geometry when temporal resolution is reduced, as highlighted in the area in the green boxes.

Figure 4. Ambient Light and Low Albedo Background Ablation.
We compare PlatoNeRF and S3-NeRF when trained on scenes with
ambient light or low albedo background. PlatoNeRF is robust to
both, whereas the performance of S3-NeRF degrades.

D.1. Spatial- and Temporal-Resolution

Qualitative results comparing PlatoNeRF and Bounce Flash
(BF) Lidar under varying spatial- and temporal-resolutions
are shown in Fig. 3. This ablation is important because lidars
on consumer devices are often constrained to much lower
resolutions than research-grade lidars. Spatial resolution is
varied by downsampling the number of pixels, while keeping
the field of view of the lidar the same. As spatial resolution
is reduced, geometry predicted by BF Lidar becomes sparser.
The depth estimation of visible points in the scene remains
accurate, but there is no interpolation between these points.
The sparsity in visible depth information negatively impacts
the shadow carving step of BF Lidar, leading to poor recon-
struction of the chair in lower spatial resolution regimes. On
the other hand, because PlatoNeRF is able to smoothly inter-
polate across missing pixels, the resulting reconstruction is
significantly more accurate.

Temporal resolution is related to the bin size of the tran-
sient (i.e. the amount of time between each lidar measure-
ment). To increase the bin size and thus reduce the temporal
resolution of the lidar, we integrate intensities within the
bins. For example, when increasing bin size from 128 to 256
ps, we sum intensities for over every two bins. BF Lidar re-

sults maintain the shape of the chair (since shadow carving is
not significantly affected), but the visible geometry becomes
rough and bumpy since the supervision for the depth of each
visible pixel is less precise. On the other hand, PlatoNeRF
maintains smooth reconstructions.

D.2. Ambient Light

Qualitative results comparing PlatoNeRF and S3-NeRF re-
constructions under ambient light are shown in Fig. 4 (top
row). While S3-NeRF is able to model small amounts of am-
bient light, it fails under realistic amounts of ambient light,
in this case, from an added area light. On the other hand,
PlatoNeRF is still able to accurately reconstruct the scene
with the same ambient light added.

D.3. Low-Albedo Backgrounds

Qualitative results comparing PlatoNeRF and S3-NeRF re-
constructions with a low albedo background are shown in
Fig. 4 (bottom row). S3-NeRF is able to accurately recon-
struct the visible portion of the scene, but is unable to re-
cover occluded geometry due to worse contrast in the shadow
(though it is still discernible to the human eye, as shown in
Fig. 4). On the other hand, PlatoNeRF is not significantly
affected by scene albedo due to its use of a lidar rather than
RGB sensor.

D.4. Non-Planar Background Geometry

We study the impact of non-planar background geometry
on PlatoNeRF. In the main text, we show results on a scene
with curved walls, resulting in similar depth L1 and PSNR
scores as the same scene with planar walls. This result in-
dicates that PlatoNeRF is robust to non-planar foreground
and background geometry. In Fig. 5, we further increase
the complexity of the background geometry by adding two
objects: a couch and painting. As shown by the extracted
shadow in Fig. 5, the additional background objects cause
the shadow to be contorted based on the geometry its cast
on. PlatoNeRF is still able to accurately reconstruct the full



Figure 5. Non-Planar Background Geometry Ablation. We pro-
vide an additional example of PlatoNeRF reconstruction of a scene
with complex, non-planar background geometry. PlatoNeRF accu-
rately reconstructs both the non-planar foreground and background
geometery from a single view.

Figure 6. Illumination Point Ablation. We ablate the impact of
varying the number of illumination points between two and sixteen
on PlatoNeRF. While more illumination points improves recon-
struction quality, the chair’s geometry is still coarsely reconstructed
with just two illumination points.

Figure 7. Shadow Mask Ablation. We vary the threshold used
when creating shadow masks and report the change in L1 depth
error across all test viewpoints. Ablation is done on the chair scene.

scene geometry. Certain parts of the scene, such as the wall
behind the chair and the self-occluded face of the armrest,
will not have two-bounce ToF measurements, resulting in
PlatoNeRF interpolating the geometry in those areas.

D.5. Number of Illumination Points

We further ablate the impact of reducing the number of
illumination points used to train PlatoNeRF. In our main
experiments, we use sixteen illumination points. We reduce
that number to eight, four, and two and report the results in
Tab. 1. Qualitative results are shown in Fig. 6. The scene is
reconstructed for each number of illumination points, how-
ever, as the number is reduced, quality also decreases, as
there is less information about occluded regions. When there
are only two illumination points, the occluded chair legs are
not reconstructed. We note that while we study the number
of illumination points, their location is also an important fac-
tor in reconstruction quality. As the number of illumination
points is reduced, the location of the remaining illumination
points becomes increasingly important, i.e. casting shadows

with the most relevance and diversity. In these experiments,
we randomly choose which illumination points to use.

D.6. Shadow Mask Threshold

We ablate the impact of the shadow mask threshold on Pla-
toNeRF reconstruction quality. Shadow masks are generated
from the raw time-of-flight data, as described in Sec 3.3 of
the main text. To ablate the impact of the probability thresh-
old used to extract shadow masks, we vary it between zero
and one in increments of 0.125. Fig. 7 shows the resulting
shadow masks and depth L1 error across test views at each
threshold. While a shadow probability threshold of 0.15 was
used to generate the results in the main text, ablation results
indicate that a threshold of 0.25 leads to even better per-
formance. While the approach employed by PlatoNeRF for
extracting shadow masks is common in past work, such as
BF Lidar, PlatoNeRF is agnostic to the shadow segmenta-
tion approach and more sophisticated methods [5] can be
extended to transient data and employed in the future.
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