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A. Implementation Details
A.1. Line detector

We design a line detector by modifying S-Net in [1] to select K reliable lines from a set of line candidates. Figure 1 shows
the structure of the modified line detector performing three steps: encoding, classification/regression, and NMS.
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Figure 1. The architecture of the modified line detector.

Encoding: Given an image, the encoder extracts a convolutional feature map X € R *W*C Specifically, we first extract
multi-scale feature maps (the three coarsest feature maps) using ResNet50 [2] as the backbone. We then match each channel
dimension to C by applying a pair of 3 x 3 dilated convolutional layers with batch normalization and ReLU activation. We
also match the resolutions of the two coarser maps to the finest one using bilinear interpolation and concatenate them. Finally,
‘We obtain a combined feature map X by applying two 3 x 3 dilated convolutional layers and one 3 x 3 convolutional layer.

Classification and regression: A line candidate, which is an end-to-end straight line in an image, can be parameterized by
polar coordinates in the Hough space [3]. Let [ = (p, ) denote a line, where p is the distance from the center of the image
and @ is its angle from the z-axis. Then, we generate an initial set of N line candidates, L = [I1,la,...,Iy] € RN*2, by
quantizing p and @ uniformly. For the N line candidates, we predict a probability vector P € R¥*! and an offset matrix
O € RN*2 To this end, we extract a line feature matrix X; € RY*® of L by employing a line pooling layer [4]. Then,
we feed X; into classification and regression layers to predict P and O, respectively. More specifically, P = o(f1(G)) and
O = f»2(G), where f; and f> consist of two fully-connected layers, respectively, and o (-) is the sigmoid function. Then, we
update the line candidates by L = L + O.

NMS: We select A reliable lines from the updated set L based on the line probability matrix P. Specifically, we select the
line with the highest probability and then remove the overlapping lines, whose Lo-distances in polar coordinates from the
selected one are lower than a threshold. We iterate this process /K times to determine K reliable lines.

Generating line combinations: From the K reliable lines, we generate all 2% line combinations. This process is done
in parallel. Specifically, we compose a combination matrix C = [cy, Ca, .. ., Cox] € RE*2" . Each column ¢; € RX is
a boolean vector, where the kth element cf is set to 1 if the kth reliable line belongs to the ith line combination, and 0
otherwise.



A.2.SLCD

We develop the semantic line combination detector (SLCD) to find the best line combination. The structure of SLCD is
shown in Figure 3 in the main paper. It performs four steps: encoding, semantic feature grouping, compositional feature
extraction, and score regression. Here, we describe the semantic feature grouping and score regression steps in detail.

Semantic feature grouping: Figure 2 (a) and (b) show the semantic feature grouping module and its cross-attention (CA)
block, respectively. In Figure 2 (a), the module updates the region query matrix R three times using CA blocks. Each
CA block takes F' and R as input and yields updated region query matrix R. In the last block, it additionally outputs the
attention matrix A. In Figure 2 (b), LN and MLP denote layer normalization and multi-layer perceptron, respectively. The
MLP consists of two fully connected layers with ReLU activation. Also, the projection matrices Uy, U, U, € RE*C are
implemented by a fully connected layer.
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Figure 2. The architectures of the semantic feature grouping module and its cross-attention block.

Score regression: We assess each line combination using a regressor. The regressor takes the compositional feature map
Z € RUWX6C 5 ir}ljput and predicts a composition score s. More specifically, we first obtain a reduced feature map by
Z'=fW(2)) e R %O where % is the bilinear interpolation to reduce the resolution by a factor of 71;_ Also, f consists
of 2D convolution layers to reduce the channel dimension to C. We then estimate the score by s = g(Z’), where Z' is a

flattened Z’, and g consists of a series of fully connected layers with ReLU activation.

A.3. Training and hyper-parameters

Let us describe the training process of the modified line detector in detail.

Line detector: We generate a ground-truth (GT) line probability vector P € RY*! and a GT offset matrix O € RV *2,
Specifically, we set P, = 1 if the Lo-distance in polar coordinates between a line candidate and the best matching GT line is
lower than a threshold, and P, = 0 otherwise. Also, we obtain O; by computing the offset vector between a line candidate [
and its matching GT line. To train the modified line detector, we minimize the loss

L = A\ las(P, P) + Xalye (0, 0) (n

where (.5 is the cross-entropy loss, and £;cg is the smooth L; loss. We set A; and ), to 1 and 5, respectively. We use the
AdamW optimizer [5] with an initial learning rate of 10~ and halve it after every 80,000 iterations five times. We use a batch
size of eight. Also, we resize training images to 480 x 480 and augment them via random horizontal flipping and random
rotation between —5° and 5°.

Hyper-parameters: Table 1 lists the hyper-parameters in the proposed algorithm. We will make the source codes publicly
available.

Table 1. Hyper-parameter settings.

Line detector Description SLCD Description

H =60 Feature height H =60 Feature height

W =60 Feature width W =60 Feature width

C =96 # of feature channels C =96 # of feature channels
N = 1024 # of line candidates M =38 # of region queries

K=28 # of reliable lines T=1 scaling factor




B. CDL Dataset
B.1. Data preparation

Semantic lines represent the layout and composition of an image. Despite the close relationship between semantic lines
and photographic composition, existing semantic line datasets do not consider image composition. To assess semantic line
detection results for various types of composition, we construct a compositionally diverse semantic line dataset, called CDL,
in which the photos are categorized into seven composition classes: Horizontal, Vertical, Diagonal, Triangle, Symmetric,
Low, and Front. In Low and Front, humans and animals are essential parts of the image composition. In the other classes,
most images are outdoor ones, as in the other datasets. CDL contains 7,100 scenes split into 6,390 training and 710 test
images. Figure 3 shows example images and annotations in the proposed CDL.
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Figure 3. Example images and annotations in the proposed CDL dataset.



B.2. Manual annotation

For each image, we annotated the start and end points of each semantic line. We employed an annotation tool, CVAT [6], as
shown in Figure 4. We adjusted the coordinates of each line so that the lines represented the image composition optimally and
harmoniously. Eight people inspected each annotated image, and unsatisfactory annotations were identified and re-annotated.
The inspection was repeated until a consensus was made. The manual annotation process took more than 200 man-hours.
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Figure 4. Manual annotation process of semantic lines using CVAT. Ground-truth lines are depicted in green.

C. More analysis
C.1. Performances

Table 2 reports the performances on the SEL and SEL_Hard datasets. We compare the area under curve (AUC) perfor-
mances of the precision, recall, and F-measure curves, which are denoted by AUC_P, AUC_R, and AUC_F, respectively [4].
Also, Table 3 compares the EA-scores [7] on the NKL and proposed CDL datasets. Note that, unlike HIoU [1], AUC perfor-
mances and EA-scores do not consider the overall harmony of detected lines. They only consider the positional accuracy of
each detected line. We see that the proposed SLCD provides better results on most datasets in terms of detecting harmonious
lines while accurately identifying individual lines.

Table 2. Comparison of the AUC and HIoU on the SEL and SEL_Hard datasets.

SEL SEL_Hard
AUC_P AUCR AUC_F HIoU AUC_P AUCR AUC_F HIoU
SLNet [4] 80.72 84.22 82.43 77.87 74.22 70.68 72.41 59.71
DHT [3] 87.74 80.25 83.83 79.62 83.55 67.98 75.09 63.39
DRM [8] 85.44 86.87 86.15 80.23 87.19 77.69 82.17 68.83
HSLD [1] 89.61 83.93 86.68 81.03 87.60 72.56 79.38 65.99
Proposed 95.27 80.03 86.99 84.09 90.32 70.14 78.96 68.15

Table 3. Comparison of the EA-scores and HIoU on the NKL and CDL datasets.

NKL CDL
Precision Recall F-measure HIoU Precision Recall F-measure HIoU
SLNet [4] 74.41 74.50 74.45 65.49 63.99 74.08 68.61 57.78
DHT [3] 78.76 83.17 80.88 69.08 72.02 79.49 75.52 63.24
DRM [8] 74.27 79.28 76.67 67.42 72.80 72.13 72.46 63.96
HSLD [1] 79.60 81.14 80.36 74.29 71.74 75.86 73.73 64.98
Proposed 84.39 80.60 82.44 76.21 75.69 78.41 77.02 68.85

Table 4 shows the HIoU scores on the proposed CDL dataset according to the composition classes. We train the existing
detectors on CDL using their publicly available source codes. We see that the proposed SLCD outperforms all the existing
techniques in all classes without exception. Among the seven classes, Low and Front are challenging ones because the
complex boundaries of objects (humans or animals) make it difficult to identify the implied semantic lines. Qualitative
results are shown in Section D.3.



Table 4. Comparison of the HIoU scores (%) according to the composition classes in the CDL dataset.

Horizontal Vertical Diagonal Triangle Symmetric Low Front Total
SLNet [4] 72.67 51.32 64.52 47.04 69.18 46.87 49.25 57.78
DHT [3] 76.02 59.70 64.87 59.45 65.61 47.82 60.43 63.24
DRM [8] 75.86 61.19 67.86 51.69 69.09 49.68 63.41 63.96
HSLD [1] 76.43 60.36 69.01 58.35 69.66 54.91 60.75 64.98
Proposed 717.55 66.15 72.87 67.89 72.03 57.13 64.84 68.85
C.2. Ablations

N and K: As described in Section 3.1 in the main paper, to generate a manageable number of line combinations, we filter
out redundant line candidates and obtain K reliable lines. Table 5 lists the performances according to the number N of line
candidates and the number K of reliable lines on CDL: (a) Recall (EA-score) rate of the line detector according to N, and
(b) HloU of the proposed SLCD according to K. The processing times are also reported in seconds per frame (spf).

In Table 5 (a), as NV increases, the recall rate gets higher. However, too large values of /N make the training of the line
detector challenging, yielding a lower recall rate at N = 1444, compared to N = 1024. Hence, we set N = 1024. In Table 5
(b), as K increases, the HIoU score gets higher. At K = 10, SLCD achieves the highest HIoU, but it becomes too slow. It
takes 4 times longer at K = 10 than at K = 8, whereas their HIoU gap is 0.27 only. As a tradeoff between performance and
speed, we set K = 8.

Table 5. Comparison of the performance according to the number NV of line candidates and the number K of reliable lines on CDL.

K =38 Line detector N =1024 SLCD

N > 400 900 1024 1444 K > 6 8 10
Recall 88.61 90.16 91.77 91.23 HIoU 67.96 68.85 69.12
spf 0.027 0.028 0.030 0.032 spf 0.033 0.074 0.316

(a) Recall rate of the line detector according to N (b) HIoU of SLCD according to K.

C.3. Visualizations

Sorting results according to composition scores: Note that we determine an optimal group of semantic lines in an image, by
finding the line combination with the highest composition score, estimated by the proposed SLCD. Figure 5 (b) and (c) show
examples of top-4 and bottom-4 line combinations, respectively. The top-4 detection results represent image composition
faithfully. In contrast, the bottom-4 detection results represent it poorly. These examples indicate that the proposed SLCD
evaluates each line combination reliably based on composition analysis.

Figure 5. Sorting of line combinations based on predicted composition scores: (a) ground-truth lines, (b) top-4 line combinations, and (c)
bottom-4 line combinations.



D. Qualitative Results
D.1. Comparison on SEL and SEL_Hard

Figure 6 and Figure 7 compare the proposed SLCD with conventional algorithms on SEL and SEL_Hard, respectively.

SLCD provides better detection results than the conventional algorithms.
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Figure 6. Comparison of semantic line detection results on the SEL dataset.
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Figure 7. Comparison of semantic line detection results on the SEL_Hard dataset.
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D.2. Comparison on NKL

Figure 8 compares the proposed SLCD with existing line detectors on NKL.
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Figure 8. Comparison of semantic line detection results on the NKL dataset.



D.3. Comparison on CDL

Figures 9~15 compare semantic line detection results of the proposed CDL with those of the conventional algorithms on
the Horizontal, Vertical, Diagonal, Triangle, Symmetric, Low, and Front classes in the CDL dataset, respectively. We see that
the proposed algorithm provides more reliable detection results consistently.
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Figure 9. Comparison of semantic line detection results on the Horizontal class in the CDL dataset.
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Figure 10. Comparison of semantic line detection results on the Vertical class in the CDL dataset.
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Figure 11. Comparison of semantic line detection results on the Diagonal class in the CDL dataset.
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Figure 12. Comparison of semantic line detection results on the Triangle class in the CDL dataset.
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Figure 13. Comparison of semantic line detection results on the Symmetric class in the CDL dataset.
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Figure 14. Comparison of semantic line detection results on the Low class in the CDL dataset.
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Figure 15. Comparison of semantic line detection results on the Front class in the CDL dataset.

E. Applications
E.1. Dominant vanishing point detection

We apply the proposed SLCD to detect dominant vanishing points by identifying the vanishing lines. We declare the
intersecting point of two lines as a vanishing point. We assess the proposed SLCD on the AVA landscape dataset [9] which
contains 2,000 training and 275 test landscape images. Figure 16 shows more results of vanishing point detection.

Figure 16. More results of vanishing point detection.



E.2. Reflection symmetry axis detection

We test the proposed SLCD on three datasets: ICCV [10], NYU [11], and SYM_Hard [8]. ICCV provides 100 training
and 96 test images, NYU contains 176 test images, and SYM_Hard consists of 45 test images. In these datasets, each images
contains a single reflection symmetry axis. We trained the model on the ICCV and tested it on all datsets. Figure 17 shows
more results of vanishing point detection. In the top row, the ground-truth and predicted axes are depicted by dashed red and
solid yellow lines, respectively. The membership maps are also visualized in the bottom row.

Figure 17. More results of symmetric axis detection.

E.3. Composition-based image retrieval

We test the proposed SLCD on Oxford 5k and Paris 6k dataset [12], containing photographs of landmarks and local
attractions in two places. Since it contains indoor and outdoor images mainly, we use the network trained on NKL dataset.
We first detect semantic lines for all the images, while storing the positional feature map P. Then, we filter out images whose
the composition scores are lower than a threshold 0.75 since a low score indicates a low quality image with inharmonious
composition, as shown in Figure 5. Then, for a randomly selected query image, we compute the ¢5-distances between the
positional feature maps P of the query and the remaining images. We determine the images with the smallest distances as
retrieval results. Figure 18 shows more results of composition-based retrieval.

Query image Top-7 retrieval results

Figure 18. More results of composition-based retrieval.



E.4. Road lane detection

We apply the proposed SLCD to the lane detection task, by employing the CULane dataset [13]. CULane is a road lane
dataset in which lanes are annotated with 2D coordinates. To obtain ground-truth semantic lines corresponding to the lanes in
an image, we declare the most overlapping line with each lane as a semantic line. Figure 19 shows some examples of original
lane points and ground-truth semantic lines, depicted by red dots and green lines, respectively.

Figure 19. Examples of original lane points and ground-truth semantic lines.

We train SLCD and compare it with the second-best line detector HSLD [1]. Figure 20 shows some lane detection results
on the test set. SLCD detects semantic lines more reliably in road scenes than HSLD does, even though some lines are

implied due to occlusion or poor illumination. Table 6 compares the HloU and AUC results. We see that SLCD outperforms
HSLD meaningfully.
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Figure 20. Comparison of semantic line detection results on the CULane dataset.

Table 6. Comparison of the HIoU and AUC results on the CULane dataset.

AUC_P AUCR AUC_F HloU

HSLD [1] 92.38 80.11 85.80 74.14
Proposed 9291 84.86 88.55 76.97
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