
A. Related work

We refer the readers to a recent survey [14] for a detailed
account of research in data influence estimation. In this
section, we will focus on key ideas and representative prior
works in this field and elaborate on their connections with
our work.

Gradient-based influence estimation. Intuitively, when
models are trained with data, each training data has a unique
gradient trace. Many studies have been focusing on measur-
ing the influence of data through the lens of gradient align-
ment between training and test samples. Koh and Liang
[22] leveraged a classic robust statistics concept, Influence
Function [6], to quantify training data influence. IF evalu-
ate the effect of infinitesimal change on the loss associated
with an individual training point on the test loss. The com-
putation of IF requires inverting the Hessian matrix, which
is prohibitively expensive for modern neural networks. To
tackle this challenge, Koh and Liang [22] proposed to com-
pute IF via iteratively approximating the Hessian-vector
product (HVP). Pruthi et al. [29] presented TracIn, a tech-
nique to estimate the influence of each training data by ex-
ploiting the gradient over all iterations. In particular, this
influence estimator relies on the gradient of a test loss and
a training loss. To scale up the approach, a practical al-
ternative was proposed that considers a few checkpoints to
calculate the gradient rather than using full iterations to ap-
proximate the data influence. Our work studies the duality
associated with these gradient-based influence quantifica-
tion schemes and leverages the duality to propose a more
efficient alternative that does not require calculating gradi-
ents for individual training points.

Re-training based influence estimation. Re-training-
based methods follow a general recipe that starts by training
models on different training data subsets and then examin-
ing how the performance of these models changes when a
given training point is added to the subsets. Ilyas et al. intro-
duced Datamodel [16] which involves training thousands
of models to estimate the data influence of each training da-
tum. Specifically, this method leverages a parameterized
surrogate model to predict the model performance based
on the input training set and the surrogate model is learned
from a training set consisting of pairs of an input subset and
the corresponding model performance. Park et al. [27]
proposed TRAK, which leveraged several techniques to en-
hance the efficiency of Datamodel. TRAK linearizes the
model output function using Taylor approximation and re-
duces the dimensionality of the linearized model using ran-
dom projections. However, it still requires repeated model
training.

Another line of research does not train surrogate mod-
els for data influence estimation; instead, they directly

compute a weighted average of the model performance
changes in response to the addition of a training point across
different subsets. Notable examples include the Shapley
value [12, 17], Beta Shapley [24] and Banzhaf value [36],
which differ in the design of the weighting scheme over
different subsets. However, these methods face significant
computational challenges for large models due to the need
of retraining models on different subsets. Just et al. [19]
recently proposed LAVA as a scalable solution that evalu-
ates data influence on the model performance using optimal
transport. Despite LAVA’s efficiency, LAVA does not pro-
vide a way for monitoring the training data’s contribution to
the model prediction on the individual test point.

Figure 6. Correlation scores across different datasets under the
noisy and near-noiseless settings. The first row shows the corre-
lations between Inf(Di → Dtst) and Inf(Di ← Dtst) under the
near-noiseless setting, and the second row presents the correlation
results under the noisy setting.

Validation Set Size 50 100 1000

MNIST
Pearson 0.9208 0.9512 0.9652

Spearman 0.9755 0.9764 0.9942

FMNIST
Pearson 0.9244 0.9611 0.9786

Spearman 0.9568 0.9795 0.9964

CIFAR10
Pearson 0.6918 0.8401 0.8551

Spearman 0.8274 0.9034 0.8848

Table 4. Correlation scores across different sizes of the validation
set. We keep the same mislabeled ratio (i.e., 0.5) while changing
the sizes of the validation set.

B. Additional Results on Empirical Study of
the Mirrored Influence Hypothesis [Sec-
tion 2.1]

In this section, we delve deeper into our Mirrored Influence
Hypothesis, as introduced in Section 2.1, by presenting a
more detailed analysis and additional results.



Figure 7. Detailed visualization of each value in the calculation of Inf(Di → Dtst) and Inf(Di ← Dtst) across various datasets, validation
set sizes, and mislabeled ratios. The x-axis represents different mislabeled ratios according to different groups, while the y-axis shows the
value of each term (i.e.,L(A(Dtrn), Dtst), L(A(Dtrn \Di), Dtst), L(A(Dtrn ∪Dtst), Di), L(A(Dtrn), Di)).

Mislabeled Ratio 20% 30% 50%

MNIST
Pearson 0.9621 0.9864 0.9640

Spearman 0.9653 0.9915 0.9907

FMNIST
Pearson 0.9421 0.9857 0.9752

Spearman 0.9479 0.9840 0.9915

CIFAR10
Pearson 0.7521 0.9697 0.8551

Spearman 0.7838 0.9702 0.8848

Table 5. Correlation scores across different mislabeled ratios in
Dtrn. We keep the same validation set size (i.e., 500) while chang-
ing the mislabeled ratios.

Analysis of correlation scores across different datasets.
We first demonstrate the validity of our hypothesis across
different datasets under a near-noiseless setting and a noisy
setting.

In the near-noiseless case, we train a logistic regression
model using L-BFGS for 1000 iterations with L2 regular-
ization set at 0.001. For the noisy setting, we train a convo-
lutional neural network, consisting of two convolution lay-
ers and two MLP layers using SGD with a learning rate of
0.01, a weight decay of 0.001, and a momentum of 0.9. To
increase the magnitude of influence of each data point, we
select a subset of data, specifically 1050 samples from the
MNIST and FMNIST datasets, and 900 samples from the
CIFAR-10 dataset.

As shown in Figure 6, we observe the high Pearson and

Spearman correlation scores obtained across three datasets
and two settings. In the near-noiseless setting, we find high
correlation scores across all datasets. In the noisy setting,
the CIFAR-10 results show a slight decline in correlation
scores. This decrease can be attributed to the limited sample
size from CIFAR-10, which potentially led to higher loss
and introduced more noise in score calculation.

Analysis of correlation scores across different sizes of
the validation set. Recall the equations of Inf(Di →
Dtst) and Inf(Di ← Dtst) from Section 1.

Inf(Di → Dtst) = L(A(Dtrn), Dtst)− L(A(Dtrn \Di), Dtst).

On the other hand, the test-to-train influence characterized
by P2 can be written as

Inf(Di ← Dtst) = L(A(Dtrn ∪Dtst), Di)− L(A(Dtrn), Di).

In Section 2.1, when we describe our hypothesis under
the noisy setting, we use a group of test points Dtst to calcu-
late Inf(Di ← Dtst) and Inf(Di → Dtst) as well as a group
of training points (i.e., group-to-group influence). To eval-
uate the impact of the size of the validation set, we conduct
experiments with varying validation set sizes while main-
taining the other factors (e.g., mislabeled ratio, and hyper-
parameters).

Table 4 shows that enlarging the validation set size (e.g.,
from 50 to 1000) is advantageous across all datasets. The



rationale behind this observation is that a larger validation
set (i.e., |Dtst|) yields less sensitivity in the scoring of each
term (i.e., L(A(Dtrn), Dtst) and L(A(Dtrn \ Di), Dtst) in
Inf(Di ← Dtst). In particular, if we have a larger valida-
tion set for Inf(Di → Dtst), we remove the sensitivity in
the choice of validation samples, leading to accurately esti-
mating the effect of each group. Additionally, introducing
a larger number of clean samples (i.e., Dtst) to Dtrn might
trigger a larger difference between L(A(Dtrn ∪ Dtst), Di)
and L(A(Dtrn), Di) due to the amplified negative effect.
The second row of Figure 7 further illustrates that enlarging
the validation set size enhances the impact of each group.
In particular, as depicted by the steeper and smoother blue
lines (i.e., L(A(Dtrn), Dtst)) in the second of the figure, a
larger clean validation set helps to mitigate the noise at-
tributable to the stochastic nature of the learning process.

Analysis of correlation scores across different misla-
beled ratios. In our analysis, we also consider the impact
of different mislabeling ratios within the training dataset
(Dtrn). Table 5 underscores the importance of choosing
an appropriate mislabeled ratio. This factor is crucial in
mitigating stochasticity by amplifying the influence of each
group when analyzing correlation scores in a noisy set-
ting. Our empirical study indicates that a mislabeling ra-
tio exceeding 30% tends to yield less noisy results since
it amplifies meaningful signals, such as clear differences
between groups. As depicted in the third row of Fig-
ure 7, a 20% mislabeling ratio is insufficient to reduce noise
in score calculation (i.e., more fluctuation in the line of
L(A(Dtrn \Di), Dtst)).

It is important to avoid excessively high mislabeling ra-
tios, like over 50%, as they can adversely affect the learning
process. For example, with too many mislabeled samples, a
model struggles to be effectively trained on the dataset and
tends to underfit. This situation makes it difficult to dif-
ferentiate signals between each group because having many
mislabeled samples across different groups may yield a high
loss for L(A(Dtrn), Di) and L(A(Dtrn\Di), Dtst) as shown
in the third row of Figure 7. This high loss in the initial stage
may not only contain signals of each group’s influence but
also have additional noise that prevents one from magnify-
ing the influence of each group.

C. Continual Learning vs. Training from
Scratch [Section 3]

As we are considering the new objective of adding a test
set Dtst to the training dataset Dtrn, the model trained with
the new objective will be θ̂ε,Dtst = argminθ L(θ,Dtrn) +

εℓ(θ,Dtst). Once θ̂ε,Dtst is obtained, one can evaluate the
change in the loss of individual training points:

Forward-INF (Di) = L(θ̂ε,Dtst , Di)− L(θ̂, Di) (9)

The main challenge here is to efficiently obtain θ̂ε,Dtst

from θ̂. Note that for any θ that is close to θ̂, we have

L(θ,Dtrn) + εℓ(θ,Dtst)

=L(θ̂, Dtrn) + εℓ(θ̂, Dtst)

+ (θ − θ̂) · ∇θ[L(θ,Dtrn) + εℓ(θ,Dtst)]|θ=θ̂

+O(∥θ − θ̂∥22)

≈L(θ̂, Dtrn) + εℓ(θ̂, Dtst)

+ (θ − θ̂) · [∇θL(θ,Dtrn) + ε∇θℓ(θ,Dtst)]|θ=θ̂
(10)

≈L(θ̂, Dtrn) + εℓ(θ̂, Dtst)

+ (θ − θ̂) · ε ∇θℓ(θ,Dtst)|θ=θ̂ (11)

where the first approximation holds for ε → 0 and con-
tinuity of the loss function and the second approximation
holds for ∇θL(θ,Dtrn)|θ=θ̂ = 0 for θ̂ being the minimizer
of ℓ(θ,Dtrn) by definition. Taking the argmin on both sides
of (10) yields

θ̂ε,Dtst = argmin
θ

[L(θ,Dtrn) + εℓ(θ,Dtst)]

≈ argmin
θ

[
L(θ̂, Dtrn) + εℓ(θ̂, Dtst)

+ (θ − θ̂) · ε ∇θℓ(θ,Dtst)|θ=θ̂

]
(12)

= argmin
θ

(θ − θ̂) · ε ∇θℓ(θ,Dtst)|θ=θ̂ (13)

Note that to find the minimum of (12), one needs to
search along ∇θℓ(θ,Dtst)|θ=θ̂, i.e., the current gradient di-
rection at the test sample. Thus, to find θ̂ε,Dtst , given that
ϵ → 0 and (θ̂ε,Dtst − θ̂) is small assuming continuity of
the loss function, one only needs to continually update the
trained model θ̂ on the given test sample Dtst.

In standard practice, ε is often considered to be posi-
tive as it represents the model being trained on the test
sample (i.e., ε → 0+). However, if the test sample is
drawn from a similar distribution as the training data (i.e.,
∇θℓ(θ,Dtst)|θ=θ̂, the magnitude of the gradient is small.
Interestingly, and counter-intuitively, we can estimate data
influence effectively with impressive accuracy by setting ε
to be negative and employing the gradient ascent on the test
sample. Namely, we define the following mirrored metric

Forward-INF(Di) :=
ℓ(θ̂ε,Dtst , Di)− ℓ(θ̂, Di)

ε

∣∣∣∣∣
ε→0−

(14)



This technique successfully circumvents numerical is-
sues from diminished gradients on well-trained models and
remarkably enhances the accuracy of influence estimation.

D. Hyperparameter Details [Section 4]

As our approach is based on a gradient ascent (i.e., max-
imization), selecting appropriate hyperparameters (e.g.,
learning rate, the number of epochs) is essential. We note
that the details of the experiment setting for Section 2.1 are
elaborated in Section B. In this section, we mainly focus on
presenting the details of application experiments from Sec-
tion 4.

Data influence estimation in diffusion models [Sec-
tion 4.1]. In this experiment, it is necessary to fine-tune
a stable diffusion pre-trained model on a set of test samples.
To fine-tune the pre-trained stable diffusion model, we fol-
low the same setting as that from the previous work [38].
In particular, we randomly pick fine-tuning exemplars from
ImageNet [7] and further train the pre-trained stable diffu-
sion model on the selected exemplars with 5 iterations, a
learning rate of 1e-5, and a batch size of 4. After generating
the synthesized samples, we perform gradient ascent on a
set of synthesized samples with the same learning rate and
3 iterations.

Data leakage detection [Section 4.2]. We train both
ResNet-18 and ResNet-50 using the Adam optimizer with a
learning rate of 0.01 and 200 iterations for both CIFAR-10
and CIFAR-100 [23]. Due to the computational complex-
ity of our baselines ( IF, TracIN ), we randomly selected
20 test samples for evaluation. Within this study, we first
assign 20% of the total test samples specifically for the pur-
pose of hyperparameter selection, while the remaining por-
tion is dedicated to evaluation.

Model behavior tracing [section 4.5]. In this study, we
leverage the FTRACE-TREX dataset [3] for the model be-
havior tracing task. The FTRACE-TREX dataset consists
of a set of “abstracts” and a set of “queries”, and each query
is annotated with the corresponding list of fact samples [3].
The training set of FTRACE-TREX is sourced from the
TREX dataset [9], and the test set of the FTRACE-TREx
dataset is derived from the LAMA dataset [28]. Every
training example that conveys the identical information as
the given test example is designated as a ”proponent.” We
randomly sampled 100 data points for this task and took an
average of three repeated experiments.

Model/Dataset Metric IF-100 Forward-INF

ResNet-18 T-1 0.000 0.880

ImageNet-100 T-5 0.000 0.880

Table 6. Data Leakage detection performance comparison of
ResNet-18 trained on the ImageNet-100 dataset.

Figure 8. Gradient ascent dynamics on T-SNE feature space (top),
and top-5 relevant samples retrieved by Forward-INF (bottom).
The reference indicates the test sample we want to unlearn and T-
1 denotes the top-1 sample retrieved by Forward-INF (bottom)
in the T-SNE [35] feature space (top). We can observe that after a
few gradient ascent steps, the top-1 sample begins to migrate away
from the center of the feature cluster. This is crucial for effectively
detecting duplicated samples.

E. Further Analysis and Details
E.1. Analysis of Correlation between

Forward-INF (Di) and Inf(Di ← Dtst)

Validation Set Size 50 100 500

MNIST
Pearson 0.9701 0.9819 0.9951

Spearman 0.9746 0.9786 0.9942

FMNIST
Pearson 0.9450 0.9811 0.9942

Spearman 0.9479 0.9795 0.9920

CIFAR10
Pearson 0.9050 0.9528 0.9862

Spearman 0.9052 0.9413 0.9832

Table 7. Correlation scores on between Forward-INF (Di) and
Inf(Di ← Dtst). We keep the same mislabeled ratio (i.e., 0.5)
while changing the sizes of the validation set from 50 to 500.

We want to demonstrate that our influence score approx-
imator, Forward-INF , can effectively estimate the in-
fluence score of Inf(Di ← Dtst), thereby obviating the need
for re-training since it will be the equivalent influence infor-
mation as Inf(Di → Dtst). For this experiment, we chose
the noisy setting and utilized the same groups as in previ-
ous tests under the noisy setting. We performed gradient



Figure 9. Correlation scores between the estimated influence scores from Forward-INF (i.e., Forward-INF (Di)) and scores from
Inf(Di ← Dtst) across different datasets with different sizes of validation sets.

ascent with respect to a group of test samples Dtst and then
computed the loss difference between the original and the
unlearned models for different groups. We used the SGD
optimizer for gradient ascent with a learning rate of 0.01, a
weight decay of 0.001, and two iterations.

Table 7 presents the correlation scores between
Forward-INF and Inf(Di ← Dtst). As indicated in the
table, there is a consistently high correlation between our
proposed method and Inf(Di ← Dtst). Similarly, we ob-
serve that increasing the size of the validation set results in
higher correlation scores, attributed to reduced noise in the
learning process. We provide the correlation plots in Fig-
ure 9.

E.2. Data Influence Estimation in Diffusion Model
[Section 4.1]

In this section, we present both quantitative and qualitative
results of data influence estimation for diffusion models.
As delineated in [38], since the fine-tuning examples can
serve as the noisy ground truth, we can quantitatively mea-
sure whether Forward-INF can identify the ground-truth
sample as the most influential sample (Top-1). In our exper-
iment, we randomly sample 20 different objects from the
ImageNet and also construct the different sizes (e.g., 100,
1K, 10K, 20K) of candidate sets. We follow the same can-
didate set creation process as we described in Section 4.1.

If Forward-INF correctly identifies the ground truth as
the most influential point, we mark it as success and aver-
age over 20 points. The detection results are presented in
Table 8. Our observations reveal that Forward-INF cor-
rectly identifies the ground truth fine-tuning examples re-
gardless of its candidate set sizes, demonstrating its robust-
ness across varying candidate set sizes.

In addition, we provide the qualitative results in Fig-
ure 10. In this experiment, we utilize a candidate set com-
prising 20K samples and present the top 8 highest influential
training samples retrieved by Forward-INF . Most of the
retrieved samples share similar features with each other ei-
ther on an image or caption side. This indicates that the un-
learning process mostly affects the samples that share sim-
ilar features. Given that the candidate set is curated selec-
tively rather than utilizing the entire dataset, there’s a pos-
sibility that it might not include more than top-k captions
precisely identical to those of the ground truth samples. In
this case, Forward-INF might yield some samples that
are not directly relevant. However, the crucial observation
is that, despite the presence of candidate samples exhibit-
ing similar features to the ground truth in both image and
caption aspects, Forward-INF can accurately identify the
ground truth as the most influential training data, highlight-
ing its efficacy in pinpointing the key training influences in
the generation of synthesized images.



Applying other influence approximators, such as IF and
TracIn, to large-scale diffusion models poses a challenge
in terms of efficiency, as delineated in [38]. Specifically,
the IF needs to approximate the inverse Hessian matrix
as well as calculate gradients with respect to training and
test samples. However, this approach becomes problem-
atic when it comes to the large-scale stable diffusion model
(e.g., around 860 million parameters) and a large amount of
training data used (e.g., around 2 billion samples) [38]. On
the other hand, TracIn requires computing the dot prod-
uct between gradients with respect to every training and test
sample, leading to the scalability problem for large-scale
models. Therefore, as also mentioned in a previous study
[3], for the large-scale language model, one selects the first
layer, and for the classification model, the last layer has
been widely selected. However, both baselines have not
been widely explored and applied to the diffusion models
to achieve high efficiency and performance. Therefore, ad-
dressing these scalability challenges within such baselines
will be deferred to future research.

Candidate Set Size 100 1K 10K 20K

T-1 Detection 1.000 1.000 1.000 1.000

Table 8. Top-1 detection accuracy for identifying the ground truth
influential sample within candidate sets of varying sizes for the
stable diffusion model. Forward-INF shows 100% detection
performance across different candidate set sizes.

E.3. Data Leakage Detection [Section 4.2]

We further extend our experiment of data leakage detec-
tion on ImageNet-100 to validate the practicality as well
as scalability. We observe a high detection rate (e.g., 88%
top-1 detection rate) for the RN18 classifier trained on the
ImageNet-100. As the model complexity increases, the de-
tection rate slightly decreases, considering the previous re-
sults on CIFAR-10 and CIFAR-100. We hypothesize that
the unlearning process affects more diverse neurons and
their connections when larger and more complex datasets
are used, leading to a drop in performance. However, this
performance is still considered high, compared with our
baseline such as IF which completely fails as shown in Ta-
ble 6.

Unlearning dynamics. We additionally conduct a feature
embedding analysis to visualize the gradient ascent dynam-
ics in our method. In Figure 8, we present the feature
space change according to the maximization steps. Inter-
estingly, we observe that the duplicated sample (i.e., top-1)
is strongly impacted by the gradient ascent process, experi-
encing a deviation from the class cluster during the process
of unlearning. The figure in the bottom row shows examples

that receive top-5 scores out of all training samples, indicat-
ing that our approach correctly identifies both the exact du-
plicated sample as well as relevant near duplicates. This
observation supports our intuition that if we unlearn one
specific point, we could expect that class or sample-related
points would receive a high training loss change, thereby
receiving a high Forward-INF score.

Senstivity analysis of hyperparameter selection. Con-
sidering that the unlearning process may involve sensitivity
to hyperparameters (e.g., learning rate, and the number of
iterations), our method initially selects the hyperparameter
based on a holdout validation set. Consequently, we also
present the results concerning the sensitivity of the valida-
tion set size. As illustrated in Table 9, Forward-INF still
achieves 100% detection accuracy for our approach even
with only 25 validation samples, indicating that our ap-
proach exhibits low sensitivity to changes in the size of the
validation set.

E.4. Memorization Analysis [Section 4.3]

We provide extensive qualitative results for memorization
analysis in Figure 11. As we can observe from the fig-
ure, our Forward-INF can effectively retrieve the most
influential point with a much lower cost than the previous
work [11]. In addition, based on qualitative results, we con-
sistently observe that the high-influential pairs are exact or
near duplicated samples and benefit the most from mem-
orization (see the corresponding memorization score from
the figure).

E.5. Model Behavior Tracing [Section 4.5]

In this section, we delve deeper into the problem of model
behavior tracing, expanding the scope of our discussion. In
reality, it becomes inherently challenging to locate direct
supporting samples from the training data that precisely cor-
respond to a given test sample. Instead, the relationships be-
tween training samples and generating answers for the test
example often involve more indirect correlations. In light
of this, we introduce an additional experimental design to
explore a scenario wherein the test query undergoes para-
phrasing. The key question is whether we can still identify
the relevant ground-truth samples from the training data.

As demonstrated in Table 10, our proposed approach,
Forward-INF , consistently displays favorable perfor-
mance, albeit with a minor drop, while outperforming the
baseline TracIn in terms of MRR and Precision metrics
for the 15K candidate set size.

Comparison with simple model-independent informa-
tion retrieval baseline [30]. BM25 is a standard informa-
tion retrieval technique that selects proponents by retrieving
training examples with high lexical overlap with the query.



Figure 10. Extensive qualitative results of data influence estimation for the diffusion model. Similar to Figure 3, we provide the ground
truth (first column), synthesized images after fine-tuning (second column), and training images with the highest influence scores (the
remaining columns). Forward-INF can accurately identify the ground truth fine-tuning examples as the most influential data samples
contributed to the generation of new images.

Model Dataset Metric 5% [25 samples] 10% [50 samples] 20% [100 samples] 30% [150 samples]

ResNet-18 CIFAR-100 T-1 1.000 1.000 1.000 1.000

ResNet-18 CIFAR-100 T-5 1.000 1.000 1.000 1.000

Table 9. Data leakage detection performance using ResNet-18 across various validation set sizes for the sensitivity analysis of hyperpa-
rameter selection. Forward-INF consistently delivers high performance, even with small validation set sizes.
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Figure 11. Extensive results on memorization experiment. Similar to Figure 4, we present the most influential samples provided by [11],
and samples that were retrieved by Forward-INF .

Figure 12. TracIn and IF results on data leakage experiments.The right side of the figure illustrates that even though TracIn can often
identify visually similar samples to the test example, it fails to detect the ground-truth leaked sample. The left side of the figure showcases
the results using different depths and scales to empirically demonstrate why IF-10000 falls short.

BM5 has been adopted to trace facts in [3]. However, since
the influence scores derived from BM25 do not incorporate
information pertinent to the specific model under consider-
ation, it cannot be used to explain why a given model makes
some factual assertions. For instance, when our LLM pro-
duces an incorrect prediction resulting in a high loss, we
want to trace back to the contributing examples that lead
to this misjudgment for the sake of transparency and inter-

pretability. While the performance of BM25 in identifying
pertinent facts is promising [3], it falls short in shedding
light on the intricate model’s behavior (i.e., it only provides
the related facts but does not explain why a model outputs
high loss). Conversely, our proposed method is adept at
elucidating the underlying reasons behind LLM’s inaccu-
rate answers. For example, as shown in Figure 13, the
top-1 pair retrieved by our method includes the target label



Candidate Set Size

Metric

15k Inspected Queries

MRR ∆ Precision ∆ # of Queries/Min

TracIn (single) 0.1868 - 0.1549 - 396.125

Forward-INF 0.2031 0.0163 0.1551 0.0002 1289.475

Table 10. Behavior tracing performance comparison of different attribution methods on the paraphrased candidate set.

Figure 13. Comparison of the top-3 selected training samples from Forward-INF and BM25.

“France.” However, when considering the overall meaning
of the sentence, it indicates a different semantical meaning.
This observation implies the presence of semantic conflicts
(i.e., some samples share the same labels but entail differ-
ent semantical meanings) within the training samples, con-
sequently confusing the model’s learning process.


