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A. WEIGHT representation
In [9], back-projection by WEIGHT is originally applied to the concatenated subspace feature representation (Figure Aa) as

x̂ = concat→

[
{Wh}Hh=1

]
concat↓

[
{V >h X σ(X>KhQ

>
h x)}Hh=1

]
, (i)

which employs linear weight of W = concat→({Wh}Hh=1) ∈ Rd×Hd̂, a horizontal concatenation of multi-head WEIGHT

{Wh ∈ Rd×d̂}Hh=1. It should be noted that it is equivalent to our reformulation (ii) by dividing the weight W into head-wise
WEIGHT which is well interpretable from the viewpoint of mean-shift updating (Section 2);

x̂ =

H∑
h=1

Wh

[
V >h X σ(X>KhQ

>
h x)

]
. (ii)

Figure A depicts (superficial) difference of those formulations (i, ii) which are intrinsically identical.

Concat

Linear

MatMul

Scale

SoftMax

MatMul

Linear Linear

Linear

h-th head

(a) Original formulation [9]

Sum

Linear

MatMul

Scale

SoftMax

MatMul

Linear Linear

Linear
h-th head

(b) Our reformulation (Figure 1a)

Figure A. Architectural difference regarding WEIGHT in the original transformer formulation (a) in [9] and our reformulation (b), a.k.a
Figure 1a, which are mathematically described in (i) and (ii), respectively, and are intrinsically identical.
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B. Softmax with Gaussian kernel
The proposed MSF-transformer feeds a Gaussian kernel to a softmax function by

σ
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)
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− 1
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− 1
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(iii)
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(iv)

= σ
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1

2
‖K>h xi‖22
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)
, (v)

where ‖K>h xi‖22 are (pre-)computed independently of x. Therefore, we can compute the softmax at a negligible extra cost,
just for ‖K>h xi‖22, in comparison to the standard one σ

({
x>i KhQ

>
h x
}m
i=1

)
used in the original transformer.

C. ViT architecture
In the experiments (Section 3), we employ the simplified architecture [1] of Vision Transformer (ViT). It simplifies the
original ViT [2] mainly by applying (1) global average pooling (GAP) instead of using [CLS] token which is followed
by a single linear classifier and (2) fixed 2D-sinusoidal position embedding added to patch embedding of 16 × 16 pixels;
architectural parameters for various ViTs are shown in Table B. As reported in [1] and Section 3, so simplified ViTs produce
superior performance to the original ones [2].

D. Training protocol
We train all the networks from scratch by using the training parameters shown in Table A on 4 GPUs, in which batch
size B and beta-distribution parameter α in mixing augmentation vary with network sizes; strength of data augmentation is
controlled by α. They work well even on shorter training epochs, e.g., 100 epochs.

Optimizer AdamW [5]
Training epochs T -epoch, T ∈ {100, 300}
Learning rate 0.001↘ 0 (cosine-schedule)

Warmup epochs (0.1 · T )-epoch
learning rate 1

30 · 0.001↗ 0.001 (linear-schedule)
Weight decay 0.05
Batch size B
Data augmentation Crop: Random resized crop (224× 224) [6]

Appearance: Random choice of {Gray-scale, Solarization, Gaussian Blurring} [8]
+ Color jittering

Mixing: Random choice of {MixUp [12], CutMix [11]} with beta distribution of shape parameter α
Label smoothing ε = 0.1

(a) Basic parameters.

CNN-Model EfficientNet-B0 [7] ResNet-50 [3] ResNet-101 ResNeXt-50 (32×4) [10] ResNeXt-101 (32×8)

Batch size B 1024 1024 1024 1024 768
Mixing Aug. α 0.1 0.2 0.2 0.2 0.2

ViT-Model ViT-Ti [1] ViT-SS ViT-S ViT-B Swin-T [4] Swin-S

Batch size B 1024 1024 1024 768 1024 768
Mixing Aug. α 0.1 0.1 0.2 0.5 0.5 0.5

(b) Batch size B and beta-distribution parameter α in mixing augmentation.

Table A. Training parameters.



E. Ablation study: layer depth
We analyze how the MSF-transformer module works across various depths (layers) in a network. We partition 12 layers of
ViT-S in Table B into 6 blocks and embed MSF-transformer in a block-wise manner to report performance results in Table C.
The proposed module works rather uniformly across depths, rendering performance improvement of 0.1 ∼ 0.2 points at any
depths. These results show that the MSF model contributes to enhancing feature transformation in disregard of depth, which
motivates us to fully embed the MSF-transformer module to all layers in the experiments (Section 3).

Model Layer Width d Head H MLP

ViT-Ti [1] 12 192 3 4d
ViT-SS [1] 6 384 6 4d
ViT-S [1] 12 384 6 4d
ViT-B [1] 12 768 12 4d

Table B. ViT architectures. Patch size is 16 × 16 and MLP
indicates the size of hidden layer in 2-layered MLP following
the transformer module (Figure A or Figure 1).

Layers
1,2 3,4 5,6 7,8 9,10 11,12 Acc. (%)

X X X X X X 79.79 (MSF)

- X X X X X 79.65
- - X X X X 79.43
- - - X X X 79.45
- - - - X X 79.20
- - - - - X 79.22
- - - - - - 78.98 (Orig.)

X - - - - - 79.17
X X - - - - 79.31
X X X - - - 79.36
X X X X - - 79.52
X X X X X - 79.71

Table C. Performance comparison by embedding MSF-transformer
module at various depths in 100-epoch trained ViT-S. The checkmark
X indicates that the MSF module is applied at the layers.
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