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In this supplementary material, we first provide addi-

tional implementation details in Sec. A. Next, we detail our

design choices for our open-vocabulary 3D scene graph ap-

proach in Sec. B. In Sec. C we provide additional details on

our proposed baselines. Next, we highlight the improved se-

mantic understanding of our open-vocabulary method com-

pared to fully-supervised methods in Sec. D and demonstrate

the advantages with long-distance relationships compared

to 2D-only open-vocabulary methods in Sec. E. We show

unique applications of how our open-vocabulary 3D scene

graphs can be used in Sec. F. Finally, we provide more qual-

itative results in Sec. G.

A. Implementation details

For our 3D graph backbone, we extract features from the

point cloud using two PointNets that compute an initial

1024-dimensional feature vector for each node and edge.

The graph features are refined using five layers of graph

convolutions with message passing inspired by [6] and a

hidden dimension of 2048. Finally, the node features are

projected into the 768-dimensional CLIP space using a

5-layer MLP with ReLU activations and batch norm. The

edge features are concatenated with the positional encoding

from the BLIP-ViT and projected into the 1408-dimensional

BLIP feature space using a 5-layer transformer architecture.

The model is trained for 50 epochs using the Adam opti-

mizer with weight decay, a learning rate of 5e-4, and a cyclic

cosine-annealing learning rate scheduler. We use a batch size

of 6 on a single Nvidia A100 GPU with mixed-precision.

During inference time, we use the pre-trained CLIP ViT-

L/14@336 text encoder to encode the object queries and a

pre-trained Vicuna 7B LLM model from Hugging Face 1 for

predicate prediction. To query the CLIP text encoder we use

object classes from the 160 class label set from 3DSSG [6],

but we are not limited to those and can also query other

1https://huggingface.co/Salesforce/instructblip-vicuna-7b

arbitrary object classes or even concepts rather than dis-

crete classes. To prompt the LLM we design an open-ended

prompt to get the most open-vocabulary response: “Describe

the relationship between [object1] and [object2]?”. Here ob-

ject1 and object2 are the object classes queried in the first

step by CLIP. It is also possible to ask whether a specific re-

lationship exists. However, we observe that providing more

than five options confuses the LLM. To map the LLM pre-

dictions to the closed-vocabulary benchmark label set, we

use the bert-base-uncased model from Hugging Face 2 with

768-dimensional feature embeddings.

B. Design choices

To succeed with distilling an open-vocabulary 3D scene

graph method from 2D foundation models, we first study

which model and which dataset is best suited for the distil-

lation.

Compositionality pilot-study. Our approach highly de-

pends on the knowledge encoded in the 2D vision-language

model. However, Yuksekgonul et al. [8] and others [7] have

demonstrated that current contrastive pre-trained vision-

language models behave like bag-of-words models and have

little understanding of compositionality. To evaluate whether

a contrastively pre-trained VLM is suited for the distillation

into our 3D scene graph model, we perform a pilot-study

on a subset of the VL-Checklist Relation [8] benchmark.

Differently from the evaluations conducted in [8], we do

not evaluate whether the VLM can differentiate between the

correct and incorrect relationship description but provide a

set of queries where the VLM has to choose the most likely.

This makes the task much harder for the VLM as the like-

lihood that the VLM picks the correct caption among the

incorrect captions by random chance is much smaller. In the

evaluation, we query the VLM using the query template “A

relationship of a [subject] is [predicate] a [object]”, where

2https://huggingface.co/bert-base-uncased
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subject and object are fixed to the ground truth to solely eval-

uate the relationship understanding of the VLM. We report

the top-1, top-2, and top-5 recall scores denoting whether the

correct predicate was in the top-k highest similarity scores.

top-1 top-3 top-5

Random chance 0.04 0.12 0.19

CLIP (ViT-L/14) 0.12 0.30 0.42

NegCLIP 0.14 0.35 0.48

SigLIP 0.11 0.27 0.37

Table A. VL-Checklist Relation. We evaluate the embedded rela-

tionship knowledge of the current state of contrastively pre-trained

VLMs on an adapted benchmark from [52]. Results are reported for

whether the VLM scores the correct predicate in the top-1, top-3,

or top-5.

As expected, while CLIP [5], NegCLIP [8], and SigLIP [9]

are exceptional zero-shot classifiers of objects, they can-

not model inter-object relationships. The experimental evi-

dence on a small controlled evaluation benchmark indicates

that CLIP-like contrastively pre-trained VLMs do not have

enough compositional knowledge about relationships that

can be distilled into a 3D network. Therefore, in this paper,

we choose to go beyond CLIP-like VLMs for relationship

prediction and leverage a BLIP [2] vision encoder that can

be projected into the token space of an LLM via a Qformer

to predict relationships.

Distillation dataset. We choose to distill features on Scan-

Net [1] rather than 3RScan / 3DSSG [6], which we evalu-

ate on. The reason for this is highlighted in Fig. A. Both

datasets are indoor datasets depicting similar scenes. While

ScanNet was recorded with an iPad with an attached depth

sensor in landscape mode, 3RScan / 3DSSG was recorded

with a Google Tango in portrait mode. The different record-

ing setups result in entirely different vertical and horizontal

field-of-views. We reason that to extract meaningful visual

features representing the relationships between two objects,

it is necessary that two objects are nearly fully visible in

the same frame. This is rarely the case in 3RScan with its

portrait setup. Therefore, we choose to use ScanNet for dis-

tillation as more of its frames depict more than one object.

C. Baselines

In addition to proposing a novel open-vocabulary 3D scene

graph prediction method, we also propose several baselines.

Here we provide further details on these baselines.

CLIP (naive). The most naive approach is to predict objects

and predicates independently from each other directly using

CLIP [5]. We select images for each object instance as well

as images where a pair of objects is shown similar to the

process in Sec. 3.2 and encode them using the CLIP image

3RScan / 3DSSG

ScanNet

Figure A. ScanNet vs. 3RScan. We choose ScanNet over 3RScan

/ 3DSSG as a distillation dataset since the FOV of each frame is

generally higher and more objects are visible in one frame.

encoder. Then we build a fully-connected graph from the

encoded features and query the nodes with object class labels

and the edges with predicate class labels.

CLIP & NegCLIP. A more sophisticated approach using

CLIP [5] or NegCLIP [8] is more similar to our two-step

approach. The difference is shown in Fig. B. Here we also

first build a fully-connected feature graph and predict object

classes by querying the class of each node. Then we use

the predicted objects as context to query full relationships

in a second step using CLIP. Using the predicted objects as

context improves results compared to the naive approach,

nevertheless, the results fall short of our LLM approach due

to the limited compositional knowledge of both CLIP and

NegCLIP.

D. Improved semantics

While Tab. 1 in the main paper shows that our proposed

open-vocabulary 3D scene graph method achieves overall

worse performance compared to the current SOTA fully-

supervised methods, Tab. 2 demonstrates the advantages

of an open-vocabulary method, where we outperform the

fully-supervised baselines on long-tail distribution classes.

To give further insights into the benefits of our proposed



(b) Discriminative: CLIP-based Relationships (Baseline)(a) Generative: LLM-based Relationships (Ours)

[object1] standing on [object2]

[object1] lying on [object2],
[object1] next to [object2],

Figure B. Relationship prediction comparison. We compare our generative relationship prediction approach using a prompted LLM (a),

with a CLIP-based querying baseline (b) from Tab. 1. Due to the limited compositional knowledge of CLIP-like models, a discriminative

approach where predicates can be directly queried performs much worse than a generative LLM-based approach.

open-vocabulary method, we provide scores on selected ob-

ject and predicate classes in Tab. B. It shows that our open-

3DSSG SGRec3D Open3DSG

Objects R@5

cabinet / kitchen cabinet 0.39 / 0.33 0.67 / 0.87 0.39 / 0.94

chair / dining chair 0.98 / 0.00 0.94 / 0.00 0.48 / 1.00

table / bedside table 0.60 / 0.00 0.90 / 0.25 0.37 / 1.00

Predicates R@3

standing on 0.73 0.95 0.86

covering 0.00 0.00 0.24

belonging to 0.48 0.65 0.91

Table B. Semantic awareness. While fully-supervised methods

such as 3DSSG [44] and SGRec3D [22] produce overall good re-

sults, their performance on difficult, rare, and semantically descrip-

tive classes remains low. In contrast our open-vocabulary approach

excels at semantically descriptive classes.

vocabulary method outperforms the fully-supervised meth-

ods on very specific and semantically descriptive classes.

For instance, for objects our network is better at differenti-

ating a chair from a dining chair or a table from a bedside

table. At the same time, fully-supervised methods, likely

due to class imbalance during training, often only predict

a generic class rather than the most specific class possible.

This is similar for predicates. While the fully-supervised

methods generally perform well on all predicates, highly

semantic and specific predicates such as covering or belong-

ing to are predicted less accurately. In contrast, our open-

vocabulary method performs particularly well on semantic

predicates such as standing on, covering or belonging to.

E. Long distance relationships

In Tab. 3, we provide an ablation for 3D scene graph pre-

diction solely with 2D vision-language models. Only using

2D data performs worse than our learned 2D-3D ensemble

approach.

While a prediction using 2D images is possible, a sig-

nificant disadvantage of relying only on 2D data is that to

predict a relationship between two objects, those two objects

must be visible together in at least one frame. In contrast, our

method does not have this limitation since it processes the

3D point cloud and can predict a relationship between two

objects of arbitrary distance in a point cloud. Fig. C shows

such two far-apart objects that are not close enough to appear

in a shared frame, but still have a meaningful relationship

detected by our method.

F. Applications

F.1. 3D Triplet localization

3D scene graphs are useful for various downstream com-

puter vision or robotics tasks. In Fig. D we demonstrate

one of those use cases uniquely suited to our language-

aligned open-vocabulary 3D scene graphs. First, a 3D scene

is encoded as an open-vocabulary 3D scene graph using our

method. This representation is now queryable and prompt-

able with an open vocabulary, making it a versatile tool for

various scene understanding tasks. We demonstrate its use-

fulness for object localization in a 3D point cloud. Unlike

other object localization methods [4], our goal is not to lo-

calize all objects of the same class but a specific instance

that fits a relationship description. We encode a relationship

description using the CLIP [5] and BERT [3] language en-

coders to generate a triplet feature representing the relation-



Figure C. Long distance relationships. In contrast to a 2D-only

relationship prediction approach, which requires two objects to be

visible in an image together, our 3D approach can predict relation-

ships for two arbitrary far objects.

O
pen3D

SG

Chair
 in front of
bookshelf

Subgraph-matching
via Cosine Similarity

Select
object instance

CLIPBERT

Figure D. Application: Object localization via triplet descrip-

tion. Using our open-vocabulary approach, we can localize object

instances in the 3D point cloud given a relationship description of

the object instance.

ship. Then, we perform a subgraph-matching based on the

cosine similarity of each triplet in the encoded scene graph

with our target triplet feature. We select the triplet with the

highest similarity score and reference it in the point cloud

using the scene graph-point cloud alignment.

Figure E. Application: Material prediction. Using our open-

vocabulary approach, we predict the material of objects without

explicit training. We compare against OpenScene [4].

F.2. Material prediction

We present another application of zero-shot object at-

tribute/material prediction, evaluated quantitatively in

Fig. E. The material prediction can be performed without

further training with the same querying strategy described

in Sec. 3.4. Predicting attributes for each object further

enriches the predicted 3D scene graph. We provide a

top-1 accuracy metric comparison with OpenScene [4], a

point cloud-based open-vocabulary method, on 3DSSG.

Open3DSG outperforms OpenScene for most materials and

also achieves a higher average accuracy for all classes. Note

however that OpenScene predicts the material per point

while we predict the material per instance.

F.3. Reasoning over object affordances

A further application is the reasoning over scene-specific

affordances using Open3DSG. Given the open-vocabulary

representation computed by our method, we can prompt the

LLM to predict affordances between objects. These affor-

dances are grounded by the processed scene. In Fig. F, we

demonstrate how Open3DSG can reason over which objects

can be picked up by a human by prompting the LLM ”Can

you lift [x] from [y]”. Our model correctly predicts that the

pillows can be picked up from the bed while the bed would

be too heavily to lift from the carpet.

G. Additional 3D scene graph predictions

In Fig. G, we provide additional 3D scene graph predic-

tions on ScanNet [1]. Relationships for objects that are fur-

ther apart than 0.5m are pruned for clarity in the visualiza-

tion. Overall, the 3D scene graph predictions are correct and

the advantages of an open-vocabulary method become es-

pecially apparent for rare and specific object classes such

as computer desk or precise relationship descriptions such

as tv mounted on wall. But our open-vocabulary approach

still has several limitations, such as overall low diversity in

the predicted relationships. However, this limitation is not

unique to our open-vocabulary method but also remains an

issue with the current state of fully-supervised methods.

Nonetheless, our approach also has unique limitations,

such as LLM-typical hallucinations like computer desk (key-

board) connected via USB to monitor or imperfect geometric



Figure F. Application: Reasoning over object affordances. Using

our open-vocabulary approach, we reason about the affordances of

objects by for instance prompting the LLM to output whether an

object can be lifted from the other.

understanding where two monitors are both predicted to be

to the left of each other.
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Figure G. Qualitative open-vocabulary 3D scene graph predictions. Left: Colored point cloud input; Middle: Class-agnostic mask; Right:

Predicted open-vocabulary 3D scene graph.


