
Intrinsic Image Diffusion for Indoor Single-view Material Estimation

Supplementary Material

In this supplementary material, first, we show applica-
tion results (Appendix A). Then, we give additional details
on our method (Appendix B) and on the experimental set-
ting (Appendix C). We show more qualitative results on the
full material prediction, including the albedo, roughness,
and metallic properties on synthetic and real data in Ap-
pendix D. Finally, we present an additional ablation (Ap-
pendix E).

A. Applications
Our predicted materials and optimized lighting enable in-
trinsic image editing, i.e., changing solely specific aspects
of the image, such as only the materials or lighting.

A.1. Material Editing

Our sharp material predictions have smooth but sharp fea-
tures for every object with minimal or no baked-in lighting,
enabling simple image editing in the material space. An ex-
ample editing is shown in Fig. 10, where we change the wall
color from beige to cyan. Note how the reflections on the
wall turn greenish since the lamp emission mostly contains
red and green components, but the wall reflects green and
blue the most.

A.2. Lighting Editing

Our lighting provides a flexible yet controllable way to rep-
resent lighting in the scene. After fitting, the emission
weights of the light sources can be edited independently.
Thanks to the emissive representation, we can achieve phys-
ically realistic relighting (Fig. 10).

B. Method Details
B.1. Lighting Optimization

We use a hybrid lighting representation. For global and
out-of-view lighting effects, we use a pre-integrated envi-
ronment lighting parametrized by Spherical Gaussians (SG)
[27]. However, such representation alone is not sufficient
in our case since indoor scenes often have multiple light
sources close to objects, even with different emission pro-
files and varying colors requiring a spatially-varying light-
ing representation. To achieve a controllable yet expres-
sive representation, we additionally use Nlight point light
sources. We use SG emission profile for the point lights to
further improve the expressivity.

Specifically, for the global environment map and also for
each point lights, we use Nsg SGs with separate 3-channel
weights. The point lights positions are initialized over a
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Figure 10. Applications. We show two key intrinsic image editing
applications. Our method produces sharp and consistent materials
without baked-in lighting, enabling convincing material editing.
Our lighting representation allows fitting to small light sources,
even close to objects, and editing them independently.

grid in image space and are backprojected to 3D with 1e−2
offset from the surface in the normal direction in normal-
ized depth space. The emission profiles are initialized with
minimal uniform emission.

We use our predicted materials, and OmniData [11] nor-
mal estimation to rerender the scene and optimize the light-
ing parameters with L2 reconstruction loss. We consider ev-
ery light source for each pixel but without occlusions. We
found that using the absolute value of the geometry term
makes the optimization more stable because otherwise if a
light source happens to move behind an object out of the
scene, it receives no gradients anymore.

Without any regularization, this representation might end
up representing a single light source with multiple point
lights distributed over a sphere around the true source. To
avoid such a scenario, we apply two regularization terms
and an adaptive pruning scheme to motivate using the min-
imal number of point lights. We regularize the emission
weight wj of all SGs and penalize the inverse distance to
the nearest surface dnear to move the lights further away
from the reflections (Eq. (2)).

Lpos =

Nlight∑
i

1/di,near

Lval =

Nlight∑
i

Nsg∑
j

wi,j

L = Lrec + λposLpos + λvalLval

(2)



We use Adam optimizer [19] with initial learning rate
5e−2, λpos=1e−6, λval=1e−4, Nlight=6×8, Nsg=2×6.
If the loss starts to stagnate, we reduce the learning rate by
a factor of 0.5 and also prune the weakest light sources. We
disable every light sources, which total intensity is smaller
then 5% of the strongest light source. We stop the opti-
mization if the performance stagnates longer. The whole
optimization usually takes 5−10 minutes on a single A6000
GPU depending on the scene complexity.

C. Experiment Details
Baselines. Both baselines [27, 48] have been trained for
320 × 240 resolution. As reported in the original papers,
evaluating them on higher resolution leads to performance
degradation; thus, we also evaluate them on this resolution.

D. Additional Results
D.1. Synthetic Results

We provide additional material estimation results on the In-
teriorVerse dataset [48] in Fig. 14.

Variance evaluation Single-view albedo estimation is an
inherently ambiguous tasks, where specularity is one ma-
jor source of ambiguity. We show the correlation between
the metallic and albedo variance maps in Fig. 11. Glossy
objects tend to have higher uncertainty, as also found quan-
titatively in the main text. Note that perfect correlation can
not be expected, since specularity is not the only source of
ambiguity.

D.2. Real Results

We provide additional material estimation results on the
IIW dataset [4] in Fig. 15.

User study We conduct a user study to additionally evalu-
ate the real-world predictions perceptually too.

Image reconstruction We provide additional image reren-
derings using our full pipeline in Fig. 12. We thank the au-
thors of [48] for providing the code for running their method
and for discussing the results.

S-AWARE Network [18] We compare against S-AWARE
[18] in Fig. 13. Our method predicts roughness and metallic
properties as well and improves upon the albedo estimation
by avoiding baked-in lighting or shadows. We thank the
authors for providing us with their results.

E. Additional Ablations
Effect of depth-conditioning. Our approach uses only
a single image as input. However, geometry information
can give beneficial cues for the appearance decomposition,
since a physically-based renderer would require the normals
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Figure 11. Variance evaluation. To investigate one source of am-
biguity, we show a comparison between the variance of our albedo
predictions and the true metallic map. Glossy objects tend to have
higher variance due to the specular ambiguity. Further ambiguity
arises e.g. from emissive objects, small, under- or over-exposed
objects.

InteriorVerse IIW
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ WHDR ↓

Ours - ImageOnly 17.42 ± 3.08 0.80 ± 0.08 0.22 ± 0.08 25.42 22.02 ± 11.99
Ours - GTDepth 16.57 ± 3.79 0.80 ± 0.08 0.22 ± 0.08 24.36 17.05 ± 10.29
Ours - PredDepth 18.31 ± 3.44 0.82 ± 0.08 0.19 ± 0.07 22.60 16.66 ± 10.21

Table 6. Effect of depth-conditioning. Geometry information can
give helpful cues for appearance decomposition and improve our
models performance. We compare our image-conditioned method
with additional conditioning on depth and normal maps. During
training, one variant uses ground-truth geometry, the other uses
predicted geometry using OmniData [11]. In test time, we use the
predicted geometry as conditioning. Nevertheless, to stay consis-
tent with the baselines, we kept the image-conditioning variant.

for the shading and the depth for the global illumination es-
timation. To test this hypothesis, we train two other variants
of our model. Both variants use additional depth and normal
inputs. To provide a fair comparison between the variants,
we evaluate all the methods without ground-truth depth and
normal data. We use OmniData [11] to predict the depth
and normal maps of the input view and use the predicted
geometry as conditioning. One of our variants was trained
with ground-truth geometry information, the other with pre-
dicted geometry.

We show qualitative results in Tab. 6. Here, we use the
mean of 10 samples. Indeed, geometry information pro-
vides helpful cues for appearance decomposition and can
improve the performance of our model. However, to stay
consistent with all the other baselines, we kept the image-
conditioned version as our main model.
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Figure 12. Image reconstruction. Additional image reconstruction results using our full pipeline.
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Figure 13. Comparison to S-AWARE [18]. Our method gives complex material maps and also improved albedo without baked-in lighting
and shadows.
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Figure 14. Synthetic material estimation. Continues on the next page.
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Input Li et al. [27] Zhu et al. [48] Ours - Mean GT

Figure 14. Synthetic material estimation. We compare our material estimation against the baselines [27, 48]. Both baselines produce
good albedo colors overall, but they tend to bake in the lighting and specularities into the albedo map. In contrast, our method can produce
clear materials with sharp edges and fine details.
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Figure 15. Real-world material estimation. Continues on the next page.
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Input Li et al. [27] Zhu et al. [48] Ours - Mean

Figure 15. Real-world material estimation. We compare our material estimation against the baselines [27, 48]. Real-world lighting and
shadows pose a bigger challenge for the baselines and they often bake them into the albedo map. Our method can produce sharp and
detailed materials even in challenging real-world settings.


