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1. Outline

Our supplementary material provides additional details on
the method presented in Section 3 in the main paper, and
promised experiments that support the material from the
main paper. In Section 2, we summarize our algorithm for
estimating focal lengths from a given fundamental matrix
F. In Section 3 we provide more details on the real focal
length checking (RFC) described in Section 3.2 of the main
paper along with additional experiments. To supplement
the results presented in Section 5 of the main paper, we
present experiments on real-world data incorporating dif-
ferent RANSAC variants and matches in Section 4. In Sec-
tion 5 we provide an analysis of the relationship between
the camera configuration and the convergence rates of our
method. Additionally, in Section 6 we provide both syn-
thetic and real-world experiments for the case when the fo-
cal lengths of the two cameras are equal.

2. Algorithm

The complete algorithm for our method for estimating
focal lengths from a given fundamental matrix F is pre-
sented in Algorithm 1. The algorithm solves the constrained
optimization problem described in Section 3 of the main pa-
per by searching for stationary points of the Lagrange mul-
tiplier (Equation (3) in the main paper). In each iteration,
this algorithm solves a system of two equations of degree
four in two unknowns using the Gröbner basis method [15]
(for more details see the main paper).

In each iteration, the obtained solutions satisfy the
Kruppa equations κ1 = 0 and κ2 = 0. This means that
for the input fundamental matrix F and the estimated cali-
bration matrices K1 and K2, the matrix K⊤

1 FK2 is a valid
essential matrix in each iteration.

For the case of equal focal lengths, i.e., f1 = f2, the
algorithm has the same structure as Algorithm 1 and it also
solves the system of two equations of degree four in two
unknowns. The only difference is that in each step i = 1.

Algorithm 1
Input: Fundamental matrix F ,

Priors fp
i , cpi , i = 1, 2,

ϵ1, maxiter
Output: (f⋆

1 , f
⋆
2 , c

⋆
1, c

⋆
2)

1: found ← 0, k ← 1
2: f0

i ← fp
i , c0i ← cpi , i = 1, 2

3: s0 ← ⟨f0
1 , f

0
2 , c

0
1, c

0
2⟩

4: while (not found) and (k ≤ maxiter) do
5: ∆fi ← 1

wf
i

(λ1
∂κ1

∂fi
(sk−1) + λ2

∂κ2

∂fi
(sk−1))

6: ∆ci ← 1
wc

i
(λ1(

∂κ1

∂ci
(sk−1))⊤ + λ2(

∂κ2

∂ci
(sk−1))⊤).

7: λk
1 , λ

k
2 ← The solution to two equations κk

1 = 0 and
κk
2 = 0, which among all 16 solutions minimizes
|λ1|+ |λ2|

8: ∆fk
i ← ∆fi(λ

k
1 , λ

k
2), i = 1, 2

9: ∆cki ← ∆ci(λ
k
1 , λ

k
2), i = 1, 2

10: ek ←
∑

i=1,2 w
f
i (∆fk

i )
2 + wc

i (∆cki )
⊤∆cki

11: fk
i ← ∆fk

i + fp
i , cki = ∆cki + cpi , i = 1, 2

12: if (k > 1 and |e
k−ek−1|

ek
< ϵ1) then

13: ⟨f1, f2, c1, c2⟩ ← ⟨fk
1 , f

k
2 , c

k
1 , c

k
2⟩

14: found ← 1
15: else
16: k ← k + 1
17: end if
18: end while

19: if not found then
20: ⟨f1, f2, c1, c2⟩ ← ⟨fk−1

1 , fk−1
2 , ck−1

1 , ck−1
2 ⟩

21: end if

3. Real Focal Length Checking

In this section, we provide further details on the real focal
length checking (RFC) described in section 3.2 of the main
paper.
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Figure 1. Figure shows the pose (left) and focal length (right) mean average accuracy on the Phototourism dataset [13] obtained after
decomposing fundamental matrices with the Bougnoux formula [3]. To check the speed-accuracy trade-off we vary the total number of
iterations of various RANSAC implementations with and without performing RFC.

We implemented RFC by utilizing formula (1) for com-
puting the focal length from the elements of the given fun-
damental matrix F. This formula was presented in [18]. To
obtain f2

2 , the same formula can be used with F transposed.
In the code we only check the signs of the numerator and
denominator to conclude whether f2

i > 0. The check thus
uses only computationally efficient operations. Note that
the formula (1) assumes that both principal points lie at the
origin of the camera coordinate system. When the positions
of both principal points are known but different from the
origin, the fundamental matrix can be easily transformed so
that the principal points lie at the origin [23].

We implemented RFC into three state-of-the-art li-
braries for fundamental matrix estimation: OpenCV [4],
VSAC [12] and PoseLib [14]. The implementations are
modular, and thus allow us to test RFC with different types
of RANSACs even within a single library.

In OpenCV we test four configurations:
• Default - LO-RANSAC [6],
• Accurate - LO-RANSAC [6] + GC-RANSAC [1],
• MAGSAC++ [2],
• PROSAC [5].

In VSAC we test the two configurations which both use
MAGSAC++, one with PROSAC and one without it. All
of the OpenCV and VSAC variants also utilize the ori-
ented epipolar constraint [7] and DEGENSAC [8] degen-
eracy checks and SPRT verification [17]. In PoseLib we
test the default configuration implementing LO-RANSAC
with and without PROSAC. The modified versions of these
libraries are available online.1

1https://github.com/kocurvik/robust self calibration

3.1. Speed-accuracy Trade-off

In Fig. 3 of the main paper we have shown that employing
RFC within different implementations of RANSAC leads to
improvement in both the speed of computation as well as the
estimated poses when using the ground truth focal lengths
to decompose the obtained fundamental matrices. Here, we
show that this is also generally the case when decomposing
the fundamental matrices using the Bougnoux formula [3]
(Fig. 1) and our method (Fig. 2). We show that the accuracy
and computation speed improvements can, in general, be
observed both in terms of pose accuracy and estimated focal
length accuracy.

We measured the run-time of each RANSAC variant on
the Phototourism dataset [13] using LoFTR [24] correspon-
dences. We set the epipolar threshold for all variants to
3 px. We ran the evaluation on the 200 sample pairs from
each of the 12 test scenes of Phototourism. The pairs were
randomly selected based on the co-visibility criteria as out-
lined in [13]. We let each of the RANSAC variants run for
50, 100, 500, 1000, 2000, 5000 and 10000 iterations. We
prevented early termination by setting the confidence pa-
rameter to 1.0 for all methods. All tests were performed on
an Intel i7-11800H CPU. For comparison, we averaged the
wall-clock runtimes over all of the evaluated samples.

4. Additional Real-world Experiments

In this section, we present additional results on the Photo-
tourism [13] and Aachen Day-Night v1.1 [25] datasets, as
promised in Section 5 in the main paper. We test how the
compared methods perform when we use different robust
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Figure 2. Figure shows the pose (left) and focal length (right) mean average accuracy on the Phototourism dataset [13] obtained after
decomposing fundamental matrices with our method. To check the speed-accuracy trade-off we vary the total number of iterations of
various RANSAC implementations with and without performing RFC.

Phototourism [13] Aachen Day-Night v1.1 [25]

Method RFC Median mAAp Median mAAf Median mAAp Median mAAf

perr 10◦ 20◦ ferr 0.1 0.2 perr 10◦ 20◦ ferr 0.1 0.2

Ours 5.63◦ 43.95 58.92 0.140 25.59 39.06 9.07◦ 29.07 47.05 0.227 13.69 25.15
✓ 5.63◦ 44.04 59.17 0.140 25.54 39.03 8.85◦ 29.11 47.96 0.226 12.67 24.23

Hartley [11] 8.74◦ 31.45 48.38 0.244 13.23 24.14 11.87◦ 21.49 39.64 0.341 6.17 12.44
✓ 8.71◦ 31.52 48.62 0.241 13.46 24.44 11.69◦ 21.80 40.77 0.321 6.46 13.06

Fetzer [10] 8.10◦ 36.06 49.88 0.217 20.87 31.64 12.87◦ 24.46 38.96 0.300 11.25 21.42
✓ 7.94◦ 36.23 50.24 0.211 20.95 31.95 11.21◦ 25.57 41.70 0.261 12.33 22.99

Bougnoux [3] 6.63◦ 40.41 55.70 0.199 22.01 33.07 10.18◦ 27.42 45.47 0.288 11.13 21.66
✓ 6.63◦ 40.45 55.62 0.192 22.16 33.51 9.58◦ 27.93 46.49 0.251 12.25 23.26

Prior 11.03◦ 22.78 42.42 0.246 8.83 19.81 13.08◦ 17.15 37.28 0.242 4.11 6.55
✓ 11.01◦ 22.81 42.53 0.246 8.83 19.81 12.52◦ 17.63 38.71 0.242 4.11 6.55

GT intrinsics 2.31◦ 63.80 73.86 — — — 4.19◦ 52.05 63.87 — — —
✓ 2.34◦ 63.88 74.05 4.02◦ 53.21 65.89

Table 1. Median errors for poses (perr) and focal lengths (ferr
i ) and mean average accuracy scores for poses (mAAp) and estimated focal

lengths (mAAf ) on 12 scenes from the Phototourism dataset [13] and the Aachen Day-Night v1.1 dataset [25]. Matches were produced
using LoFTR [24] and the fundamental matrices were estimated using the PoseLib [14] implementation of LO-RANSAC [6]. RFC denotes
real focal length checking.

Phototourism [13] Aachen Day-Night v1.1 [25]

Method RFC Median mAAp Median mAAf Median mAAp Median mAAf

perr 10◦ 20◦ ferr 0.1 0.2 perr 10◦ 20◦ ferr 0.1 0.2

Ours 6.47◦ 40.19 56.99 0.144 24.00 37.91 10.01◦ 25.93 45.59 0.235 12.66 23.30
✓ 6.31◦ 40.63 57.40 0.143 24.27 38.20 8.91◦ 27.73 47.84 0.232 12.67 23.58

Hartley [11] 8.90◦ 30.83 48.49 0.240 12.81 23.94 12.01◦ 20.13 39.20 0.326 6.59 13.376
✓ 8.78◦ 31.00 48.60 0.239 12.97 24.09 11.40◦ 21.13 40.68 0.304 7.28 14.53

Fetzer [10] 9.15◦ 32.51 47.94 0.217 19.87 30.90 12.42◦ 22.23 38.76 0.294 11.27 20.98
✓ 8.80◦ 33.08 48.72 0.210 20.03 31.24 11.17◦ 23.20 41.28 0.259 12.31 22.55

Bougnoux [3] 7.53◦ 36.48 53.43 0.201 20.58 31.94 10.20◦ 25.75 44.86 0.285 11.63 21.39
✓ 7.40◦ 36.77 53.59 0.192 20.91 32.54 9.88◦ 25.92 45.13 0.262 12.40 22.66

Prior 10.74◦ 23.37 43.46 0.246 8.83 19.82 11.93◦ 17.82 39.47 0.355 6.78 10.60
✓ 10.68◦ 23.60 43.62 0.246 8.83 19.82 11.48◦ 18.62 40.83 0.355 6.78 10.60

GT intrinsics 3.02◦ 59.58 72.07 — — — 4.77◦ 48.98 64.11 — — —
✓ 3.00◦ 59.78 72.27 4.50◦ 50.55 65.50

Table 2. Median errors for poses (perr) and focal lengths (ferr
i ) and mean average accuracy scores for poses (mAAp) and estimated focal

lengths (mAAf ) on 12 scenes from the Phototourism dataset [13] and the Aachen Day-Night v1.1 dataset [25]. Matches were produced
using SuperPoint [9] in combination with SuperGlue [19]. The OpenCV [4] implementation of MAGSAC++ [2] was used to estimate the
fundamental matrices. RFC denotes the real focal length checking.
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(a) Phototourism [13]

0.0 0.2 0.4 0.6 0.8 1.0
Focal length error ferri

0.0

0.2

0.4

0.6

0.8

1.0

P
o
rt

io
n
 o

f 
sa

m
p
le

s

(b) Aachen Day-Night v1.1 [25]

Figure 3. Plots showing the portion of samples for which the estimated focal lengths were below a given ferr
i threshold. Both cameras are

assumed to have different unknown focal lengths. To obtain correspondences we used LoFTR [24]. We produced the fundamental matrices
using the PoseLib [14] implementation of LO-RANSAC [6].
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(a) Phototourism [13]
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(b) Aachen Day-Night v1.1 [25]

Figure 4. Plots showing the portion of samples for which the estimated focal lengths were below a given ferr
i threshold. Both cameras are

assumed to have different unknown focal lengths. To obtain correspondences we used SuperPoint [9] and SuperGlue [19]. We produced
the fundamental matrices using the OpenCV [4] implementation of MAGSAC++ [2]

.

estimators of the fundamental matrix as well as different
matches.

In the main paper in Table 1 and Figs. 4a and 4b we
present experiments with LoFTR [24] matches. We also
performed experiments using the combination of the Super-
Point [9] keypoint detector along with the SuperGlue [19]
matching network to obtain matches in images. Before in-
ference, we resize the images such that the larger dimension
of the image is 2048 pixels. Note that the memory require-
ments of the SuperGlue network depend on the number of
detected keypoints. This led to insufficient GPU memory
for some of the pairs in both datasets. We therefore skip
such pairs, but add additional pairs to keep 1000 sample
pairs per each scene.

To estimate the fundamental matrices in the main paper,
we use MAGSAC++ [2] as implemented in OpenCV [4].
We have set the epipolar threshold to 3 px using the val-

idation set. Here we also include experiments using LO-
RANSAC [6] implemented in the PoseLib library [14]. We
also use it with the epipolar threshold set to 3 px based on
performance on the validation set. We set the number of
iterations to 10000.

Table 1 and Fig. 3 show the results on both datasets
for the combination of LoFTR matches with PoseLib LO-
RANSAC. We present the results for the combination of
SuperPoint, SuperGlue and MAGSAC++ in Table 2 and
Fig. 4. The results for the same matches in combination
with PoseLib LO-RANSAC are shown in Table 3 and Fig. 5.

These results show that our method outperforms com-
peting approaches when different RANSAC and matching
methods are considered in the fundamental matrix estima-
tion pipeline. The results also show that performing the
real focal length check (RFC) generally leads to better ac-
curacy in both the estimated poses and focal lengths across

4
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(a) Phototourism [13]
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(b) Aachen Day-Night v1.1 [25]

Figure 5. Plots showing the portion of samples for which the estimated focal lengths were below a given ferr
i threshold. Both cameras are

assumed to have different unknown focal lengths. To obtain correspondences we used SuperPoint [9] in combination with SuperGlue [19].
We produced the fundamental matrices using the PoseLib [14] implementation of LO-RANSAC [6]

.

Phototourism [13] Aachen Day-Night v1.1 [25]

Method RFC Median mAAp Median mAAf Median mAAp Median mAAf

perr 10◦ 20◦ ferr 0.1 0.2 perr 10◦ 20◦ ferr 0.1 0.2

Ours 5.92◦ 42.75 59.25 0.139 24.85 38.77 10.14◦ 26.40 45.95 0.240 12.07 22.90
✓ 5.89◦ 42.80 59.33 0.139 24.83 38.82 9.69◦ 27.03 46.91 0.237 12.61 23.25

Hartley [11] 8.45◦ 31.92 49.55 0.238 13.12 24.32 11.82◦ 21.09 40.07 0.317 6.93 14.00
✓ 8.51◦ 31.87 49.57 0.237 13.24 24.30 11.46◦ 21.42 40.84 0.312 7.11 14.14

Fetzer [10] 8.35◦ 34.65 49.71 0.211 20.64 31.82 12.57◦ 22.09 38.40 0.302 10.41 20.34
✓ 8.35◦ 34.66 49.91 0.206 20.79 32.06 12.45◦ 22.39 39.04 0.291 10.65 20.78

Bougnoux [3] 6.90◦ 38.88 55.51 0.191 21.54 33.11 10.20◦ 25.49 44.67 0.295 10.82 20.63
✓ 6.93◦ 38.76 55.35 0.188 21.61 33.27 10.13◦ 25.55 44.48 0.285 11.15 21.25

Prior 10.64◦ 23.60 43.80 0.246 8.83 19.82 11.70◦ 17.88 40.24 0.355 6.78 10.60
✓ 10.68◦ 23.57 43.78 0.246 8.83 19.82 11.57◦ 17.97 40.45 0.355 6.78 10.60

GT intrinsics 2.66◦ 62.56 74.50 — — — 4.32◦ 50.83 65.57 — — —
✓ 2.67◦ 62.62 74.54 4.26◦ 51.35 66.03

Table 3. Median errors for poses (perr) and focal lengths (ferr
i ) and mean average accuracy scores for poses (mAAp) and estimated focal

lengths (mAAf ) on 12 scenes from the Phototourism dataset [13] and the Aachen Day-Night v1.1 dataset [25]. Matches were produced
using SuperPoint [9] in combination with SuperGlue [19]. The PoseLib [14] implementation of LO-RANSAC [6] was used to estimate the
fundamental matrices. RFC denotes the real focal length checking.

the compared methods.

5. Effect of Camera Configuration on Conver-
gence

In this section, we provide further insight into the con-
vergence of our method on real data. Fig. 6 shows the
distributions of convergence times expressed in wall-clock
runtime for different camera configurations on the Photo-
tourism dataset [13]. We express the camera configuration
as the angle required to turn one of the cameras so that their
principal axes would be coplanar thus resulting in the de-
generate configuration. To determine the angle, we used the
poses from the COLMAP [20] 3D reconstructions that are
provided by the dataset authors as the ground truth. The dis-
tributions for all camera configurations have two peaks. The

bottom peak corresponds to termination within afew itera-
tions, and the top peak corresponds to termination after the
maximum number of iterations is reached. For the configu-
rations that have principal axes close to coplanar (degener-
ate), it can be seen that reaching the maximum number of
iterations is more likely compared to other (non-degenerate)
configurations. The runtimes are thus longer on average
near those configurations.

6. Cameras with Equal Focal Lengths

In this section, we present additional details and experi-
ments for the case when the focal lengths of the two cameras
are assumed to be equal. We use the algorithm modified for
this scenario as described in Section 2.
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Figure 6. The violin plots show the wallclock runtimes of our method on the Phototourism dataset [13] when different camera configurations
are considered. The plot shows that when the camera principal axes are close to coplanar (intersecting) our method is more likely to
terminate when the maximum number of iterations is reached.

6.1. Synthetic Experiments

We perform the same synthetic experiments as for the case
of two cameras with unknown but different focal lengths
(cf . Section 4 in the main paper). We use the same notation
for camera configurations and added noise. We note that the
configuration of C(0◦, 0) has the two principal axes meeting
at a point equidistant from both camera centers. Thus it is a
degenerate configuration leading to a generic singularity in
the Kruppa equations [16] when the focal lengths are con-
sidered equal.

Convergence: Figures 7a and 7b show convergence rates
in non-degenerate and degenerate configurations respec-
tively. The method converges in the majority of cases in
a few iterations, even when strict thresholds are considered.
The algorithm also converges within 50 iterations for the
majority of the cases on real data from the ETH3D Multi-
view datset [21] as shown in Fig. 7c. Therefore, we set the
maximum number of iterations to 50 in further experiments.

Accuracy of the Estimated Focal Length: For compar-
ison, we use the method by Fetzer et al. [10] to optimize
for a single focal length for both cameras. Instead of the
Bougnoux formula [3], we use the formula proposed by
Sturm [23] that is specific to the case of equal focal lengths.
We use Hartley and Silpa-Anan’s method [11] as usual, but
on output we average the two focal lengths produced. We
have also implemented Hartley and Silpa-Anan’s method to
estimate a single focal length while utilizing Sturm’s for-
mula in the iterative optimization loop, but we found it to
produce less stable results than those for the selected ap-
proach.

We also evaluate the minimal 6-point algorithm [22] im-
plemented within LO-RANSAC [6, 14]. We set the number
of iterations to 10000 and the epipolar threshold to 1 px.

Fig. 8 shows the results of the synthetic experiments. We
observe a similar behavior as in synthetic experiments for
the case of different focal lengths presented in the main pa-
per (cf . Section 4). However, there are some differences
that are specific for the equal focal length case and differ-
ent methods tested in this case. Hartley and Silpa-Anan’s
iterative method performs poorly in this scenario. Sturm’s
method for equal focal lengths is more stable than the Boug-
noux formula for the general case. The method by Fetzer et
al. provides results similar to those of Sturm’s formula, but
it is less stable when bad initialization is used or when the
cameras are near the degenerate configuration. The 6-point
minimal algorithm provides stable results even in proxim-
ity of the degenerate configuration. Our method performs
on par with the minimal 6-point algorithm, thus providing a
viable alternative.

6.2. Real-world Experiments

In the main paper (cf . Sec 5, Table 3), we have presented
a comparison of various methods on the ETH3D Multi-
view dataset [21]. Here, we present additional experiments
which include evaluation of the compared methods when
RFC is used. We also include experiments using a different
RANSAC variant. We use LoFTR [24] to obtain matches.
We matched all pairs of images that had co-visibility fac-
tor [13] greater than 0.1. Prior to inference, we resized the
images so that the larger size is 1024 px. We estimated
the fundamental matrices using LO-RANSAC [6] imple-
mented in PoseLib [14] and MAGSAC++ [2] implemented
in OpenCV [4].

The results show that using our method in conjunction
with RFC leads to good accuracy in terms of both the es-
timated poses and focal lengths. In comparison, Sturm’s
method achieves the highest mAAp scores, but performs
poorly with respect to focal length accuracy. On the other
hand, the minimal solver shows good results in terms of
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(c) ETH3D Multiview [21]

Figure 7. Plots showing portion of samples for which our algorithm would converge given a threshold for the relative change of errors
in successive iterations |en−en−1|

en
< ϵ. For synthetic experiments (a) and (b) we generated 1000 samples with added noise (σn = 1,

σp = 10). We set the prior as fp = 660. For (c) we used the ETH3D Multiview dataset [21].
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Figure 8. Synthetic experiments: Box plots for the estimated focal length equal for the two cameras. Comparison of the methods as (a, b)
the camera configuration approaches the degenerate configuration, (c) we vary the error in principal point cerr , (d) we vary the noise added
to the projected points, (e) we vary the prior for f , (f) we vary the relative weights of the focal length and principal point priors. We use
priors fp = 700 for (a, b, c, d), fp = 1200 for (f), σn = 1 for (a, b, c, e, f), σp = 10 for (a, b, d, e, f). For (c, d, e, f) we randomly sample
the configuration C(θ, y) with θ ∈ [−15◦, 15◦] and y ∈ [−200, 200].

the estimated focal lengths but shows weak results when it
comes to pose accuracy. Our method is thus a viable alter-
native to other existing approaches, when both cameras are
assumed to have equal focal lengths.
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Figure 9. Plots showing the portion of samples for which the estimated focal lengths were below a given ferr threshold on the ETH 3D
Multview dataset [21]. The focal lengths for the two cameras are assumed to be equal. To obtain correspondences we used LoFTR [24]. We
produced the fundamental matrices using (a) the PoseLib [14] implementation of LO-RANSAC [6] (b) the OpenCV [4] implementation of
MAGSAC++ [2].
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