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A. Additional Qualitative Results
Figs. 1-6 depict additional qualitative retrieval results for various retrieval scenarios and datasets [1, 17] using our framework.
To delineate the abstraction-agnostic behaviour of our method, we abstracted the input sketches using the GDSA [9] method
at different abstraction budgets ({10, 30, 100}%). Fig. 1 and Fig. 2 show how our method reasonably retrieves the ground
truth paired photo even in the case of extreme abstraction of 10%.
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Figure 1. Top-10 retrieved images for inputs abstracted (by [9]) at different budgets (10%, 30%, 100%). Paired photo is red bordered.
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Figure 2. Top-10 retrieved images for inputs abstracted (by [9]) at different budgets (10%, 30%, 100%). Paired photo is red bordered.

Fig. 3 and Fig. 4 qualitatively depict our method’s efficacy over Triplet-SN [23] for the case of different sketching styles
(i.e., good, reasonable, and abstract) of the same object. It is evident from Fig. 3 and Fig. 4 that the proposed method equipped
with dynamic abstraction identification surpasses SoTA Triplet-SN [23] in every case.
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Figure 3. Proposed (blue) method’s efficacy over Triplet-SN [23] (green) against different sketching styles of the same shoe (red bordered).
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Figure 4. Proposed (blue) method’s efficacy over Triplet-SN [23] (green) against different sketching styles of the same chair (red bordered).

Finally, Fig. 5 and Fig. 6 show qualitative retrieval results of the proposed method on sketches from ShoeV2 [1, 17] and
ChairV2 [1, 17] datasets. It is worth noticing in Fig. 5 and Fig. 6 how the retrieved images transition smoothly from rank-1
to rank-10. This importantly ensures that most of the images retrieved by the proposed method are semantically relevant and
correspond to the input sketch. We posit that this behaviour is driven by the regularisation provided by the disentangled and
smooth latent space of StyleGAN [8].

Figure 5. Top-10 qualitative retrieval results of the proposed method on sketches from ShoeV2 dataset [1, 17]. Paired photo is red bordered.

Figure 6. Top-10 qualitative retrieval results of the proposed method on sketches from ChairV2 dataset [1, 17]. Paired photo is red bordered.



B. Quantitative Analysis of Dynamic Structural Latent Code Selection
To quantitatively demonstrate the relevance of the proposed dynamic structural latent code selection through the abstraction
identification head (A), we perform a few experiments. Here, instead of the automatic prediction of embedding matrix
dimension via the A module, we force the system to always use either 3, 6, or 9 structural latent codes regardless of the
input abstraction, thus resulting in a feature embedding matrix of size R3×d, R6×d, or R9×d respectively. Additionally, in
another paradigm we enforce the model to randomly select between the feature embedding matrix of size R3×d, R6×d, or
R9×d. Experimental results in Tab. 1 depict how the accuracy falls drastically in cases of fixed or random latent selection. On
the other hand, the proposed method equipped with dynamic abstraction-modelling outperforms them all with an Acc.@1 of
45.3%(72.1%) on ShoeV2 (ChairV2) dataset.

Table 1. Quantitative analysis of dynamic latent selection.

Embedding matrix dimension ChairV2 ShoeV2

Acc.@1 Acc.@5 Acc.@1 Acc.@5

R3×d 23.6 42.8 18.9 31.7
R6×d 44.7 53.6 29.2 49.8
R9×d 58.5 70.1 37.1 68.1
Random (R3×d / R6×d / R9×d) 45.4 55.1 30.5 51.3
Ours-full 72.1 80.9 45.3 77.3
Avg. Improvement +29.0 +25.5 +16.3 +27.0

C. Utility of Abstraction-aware Feature Matrix Embedding
Recent literature [7, 8, 10, 12, 22] motivates us to exploit the abstraction hierarchy present in the StyleGAN [7] latent matrix.
To justify the same, we experiment by rendering the ShoeV2 test set sketches at different stages (25-35%, 55-65%, & 90-
100%) to represent three abstraction levels and forcing the model to calculate the distance with R3×d, R6×d, and R9×d

dimensional feature matrices per level. The resultant plot (Fig. 7) shows how the proposed matrix embedding achieves
optimum Acc.@10 for each abstraction level when the distance is calculated with the corresponding matrix dimension by
traversing the rows of the matrix embedding. This underpins our hypothesis that the feature matrix embedding can efficiently
accommodate different abstraction levels.
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Figure 7. Acc.@10 comparison at different feature matrix dimension and sketch completion levels.

D. Choice of Backbone and Additional StyleGAN-based Baselines
In our approach, the pre-trained StyleGAN [8] is used only during training. During inference, we discard it and use the
trained VGG-16 [15] feature extractor (F), along with two sketch and photo-specific feature-matrix embedding networks Es
and Ep to calculate the matrix embeddings. However, following SoTAs [1, 2, 4, 13, 14], training an ImageNet-pretrained
Inception-V3 [18] feature extractor (F) we get a competitive Acc.@1 of 47.1(71.4)% on ShoeV2 (ChairV2), thus validating
our comparisons. On the other hand, to justify the proposed usage of a pre-trained StyleGAN [8] and for a fairer comparison,
we amend existing SoTAs [4, 13, 14, 16, 23] with an additional StyleGAN-based regularisation. Here, given the respective
SoTA backbones F(I) ∈ Rh×w×d, we employ 14 individual stride-two convolution blocks with LeakyReLU [21] applied
over F(I) to convert Rh×w×d → R14×d. This R14×d code upon passing through a pre-trained StyleGAN generates an image
p̂ for both photo (p̂p) and sketch (p̂s) branches, which we utilise to impose an additional reconstruction objective (Lrecons)
apart from their respective losses.

Lrecons = ∥p− p̂s∥2 + ∥p− p̂p∥2 (1)

This importantly ensures that the pre-trained StyleGAN’s knowledge is distilled into the SoTA frameworks [4, 13, 14, 16, 23].
Although this trick boosts SoTA performance up to a certain extent (Tab. 2), the proposed method surpasses them with an
average Acc.@1 of 5.6%(12.2%) on ShoeV2 (ChairV2). This further explains how the naive adaptation of StyleGAN fails
to efficiently utilise the rich information residing in a pre-trained StyleGAN’s latent space.



Table 2. Quantitative analysis of StyleGAN-based regularisation.

Methods ChairV2 ShoeV2

Acc.@1 Acc.@5 Acc.@1 Acc.@5

Triplet-SN [23] + Lrecons 50.2 75.4 33.3 68.2
HOLEF-SN [16] + Lrecons 52.6 77.1 34.8 69.9
Partial-OT [4] + Lrecons 66.2 82.8 43.1 71.8
CrossHier [13] + Lrecons 64.9 80.9 42.8 72.3
StyleMeUp [14] + Lrecons 65.4 80.1 44.6 73.5
Ours-full 72.1 80.9 45.3 77.3
Avg. Improvement +12.2 +1.6 +5.6 +6.1

E. Comparison with Other Surrogate Losses
Cross-modal retrieval is typically evaluated on three metrics – accuracy, precision, and recall [2, 14]. While precision
and recall measure how well or how many times the model detected a certain category respectively, accuracy indicates
the overall model performance irrespective of the category, thus making it the standard metric for instance-level fine-grained
retrieval tasks [20]. Existing surrogate losses [3, 11] mostly optimise category-level metrics (e.g., precision [3] or recall [11]),
rendering them sub-optimal for our fine-grained setting. On the other hand, Engilberge et al. [5] proposed an LSTM-based
network to learn ranking loss surrogates, but its adaptation has been limited in the consequent literature due to the alleged
slow training [11]. Although SmoothAP [3] and Recall@k [11] have shown promising results in fine-grained datasets like
INaturalist [19] and VehicleID [19], their off-the-shelf adaptation in our cross-modal fine-grained scenario produces sub-
optimal Acc.@1 of 40.3% and 39.5% respectively in ShoeV2. On the other hand, the proposed Acc.@q loss being tailored
for smooth approximation of the instance-level retrieval metric (i.e., accuracy), outperforms existing SoTAs by a significant
margin. More importantly, the parametric design of our Acc.@q loss allows us to use different variants (by changing
q = 1/5/10) of the same loss to tackle different abstraction levels, which in turn provide better retrieval granularity.

F. Details on Human Study
Fig. 8 and Fig. 9 depict various UIs of the applet used to collect Mean Opinion Scores (MOS) [6] through a human study.
After logging into the system, the participant first selects the category (i.e., shoe or chair) of which class he/she wants to draw
a sketch. Next, the user clicks on the “Draw” button to activate the drawing tool and starts drawing. Upon finishing, the par-
ticipant clicks on the “Retrieve” button to view the images retrieved by all competing methods. The user rates every retrieved
photo and clicks on “Submit & Next” to continue. We further sub-divide the MOS value levels (1(bad)→5(excellent)) into
nine discreet levels (e.g., {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}) [6] for brevity and ease of rating. We purposefully anonymise the
method names to prevent the rating from being influenced by the participant’s prior knowledge of the literature.

Figure 8. Login UI of the FG-SBIR human study applet



Figure 9. Scoring UI of the FG-SBIR human study applet
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