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A. Time and computational complexity

Unlike the iterative inference of text-to-image generation
via stable diffusion (SD) model [3], diffusion-based feature
extraction needs a single-step inference (Sec. 4). Most im-
portantly, instead of running SD model six times, we resort
to an efficient implementation where we repeat the query
sketch tensor six times along batch dimension and use a set
of different random noises to extract six distinct SD fea-
tures simultaneously in one step. Thus, the complexity and
runtime do not scale linearly. Instead, it takes a similar
running time compared to competing SOTAs for the same
input size. For instance, our diffusion feature extraction
(with ensembling) takes 0.85ms vs. ZS-LVM’s [4] 0.83ms
or B-Triplet+VP (VGG)’s 76ms for a 224 × 224 image on
a single Nvidia V100 GPU. Performing feature ensembling
to boost performance and stability (Sec. 7) would increase
the inference time slightly (0.82 → 0.85ms). However,
in case of a computation bottleneck, one may avoid this
with a slight dip in performance (e.g., Sketchy: mAP@200
0.746 → 0.725; TU-Berlin: mAP@all 0.680 → 0.671;
Quick, Draw!: mAP@all 0.231 → 0.220). Notably, even
without feature ensembling, our method surpasses the next
best method (i.e. ZS-LVM [4]) on all 3 benchmark datasets.
Consequently, we leave the choice of utilising this gain pro-
vided by ensembling (at a slight cost of inference time) to
the end-users.

B. Performance-complexity trade-off

Even with feature ensembling, our method takes 0.85ms
to extract a query-sketch feature (for a 224 × 224 sketch)
compared to 0.83ms of our closest competitor (ZS-LVM
[4]), which is only ∼2.4% higher, yet boosts Acc.@1 by
11.4% (ZS-FG-SBIR on Sketchy). While ZS-LVM [4]
takes 9.46G FLOPs (CLIP-ViT-B/32) to process a sketch
of size 224 × 224, our method uses 1.29G FLOPs, which
is 7.33× lower, while boosting mAP@all by 14.4% on the
Quick, Draw! dataset.

C. Ablating Stable Diffusion versions

We ablate multiple SD [3] versions on Sketchy [5] dataset in
Tab. 1. While SD v1.x models utilise CLIP [2] text encoder

during their pre-training, v2.x models resort to much larger-
scale OpenCLIP [1]. Evidently, SD v2.x models perform
better than v1.x ones with v2.1 achieving the highest score.
This is likely due to v2.x models’ adaptation of the much
larger-scale OpenCLIP [1] encoder during pre-training.

Table 1. Ablating SD versions.

SD version
Sketchy [5]

mAP@200 Acc.@1

v1.4 0.726 28.93
v1.5 0.730 29.81

v2.0 0.738 30.21
v2.1 (Ours) 0.746 31.94

D. Result across different ensemble sizes
Fig. 1 depicts qualitative results for ZS-FG-SBIR on
Sketchy across different runs with different ensemble sizes.
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Figure 1. qualitative results for different ensemble sizes.
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