Appendix of OneFormer3D

Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich Samsung Research

{m.kolodiazhn, a.vorontsova, a.konushin, d.rukhovich}@samsung.com

A. Per-category Scores

Since segmentation tasks are severely imbalanced in terms of categories, an averaged score might shadow some crucial performance issues. To provide a complete picture, we report 3D panoptic segmentation scores on the ScanNet validation split and on the S3DIS Area-5 split in Tab. 1 and 2, respectively. Besides, per-category 3D instance segmentation scores on the ScanNet test split are listed in Tab. 3. Evidently, OneFormer3D segments every single category more precisely than competitors on the ScanNet validation split. Panoptic segmentation scores on S3DIS have never been reported so far, so we establish a baseline for future research. On the ScanNet test split, our method outperforms others in segmenting objects of 11 out of 18 categories.

B. Performance

To provide a comprehensive overview of the proposed method, we also conduct a detailed performance analysis. Specifically, we decompose our method into several self-sufficient and replaceable components: creating superpoints, extracting 3D features with a sparse 3D CNN, flexible pooling, and running a query decoder. We run a profiler to measure the time required for each component to proceed. Similarly, we identify components of competing approaches, and report the inference time component-wise in Tab. 4. The runtime is measured on the same RTX 3090 GPU. Compared with the SPFormer baseline, One-Former3D processes a few additional queries for semantic segmentation, and uses another initialization strategy for instance queries. The computation overhead is though minor, causing a less than 3% increase of inference time. Overall, we can claim, that OneFormer3D is on par of SPFormer, which is the fastest among the profiled approaches.

C. Qualitative Results

To give an intuition on how the segmentation scores relate to actual segmentation quality, we provide additional visualizations of original and segmented point clouds from the ScanNet (Fig. 1) and S3DIS (Fig. 2) datasets.

Method	PQ	wall	floor	cabinet	bed	chair	sofa	table	door	window	bkshf	picture	counter	desk	curtain	fridge	s. cur.	toilet	sink	bath	other
SceneGraphFusion [12]	31.5	67.6	25.4	13.9	22.2	47.2	10.5	16.4	12.6	26.4	56.4	22.9	31.3	28.0	38.3	38.0	32.3	34.8	63.2	30.4	11.7
PanopticFusion [6]	33.5	40.4	76.4	23.8	35.8	46.7	42.1	34.8	18.0	19.3	16.4	26.4	10.4	16.1	16.6	39.5	36.3	76.1	36.7	31.0	27.7
TUPPer-Map [14]	50.2	68.5	74.6	47.1	60.3	45.8	49.6	52.5	38.1	38.7	53.5	42.0	38.8	44.6	32.6	47.5	52.3	74.5	45.5	57.4	39.9
OneFormer3D	71.2	78.9	94.9	60.9	80.4	88.8	74.4	74.4	61.5	58.9	55.2	57.1	55.8	65.7	62.5	63.3	71.7	95.9	73.7	85.5	65.2

Table 1. Per-class 3D panoptic segmentation PQ scores on the ScanNet validation split.

Method	PQ	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	b. case	board	clutter
OneFormer3D	62.2	92.0	96.5	81.5	0.0	40.9	66.2	81.4	43.9	87.0	48.5	46.0	81.3	43.9

Table 2. Per-class 3D panoptic segmentation PQ scores on the S3DIS Area-5 split.

Method	mAP ₅₀	bath	bed	bkshf	cabinet	chair	counter	curtain	desk	door	other	picture	fridge	s. cur.	sink	sofa	table	toilet	window
NeuralBF [10]	55.5	66.7	89.6	84.3	51.7	75.1	2.9	51.9	41.4	43.9	46.5	0.0	48.4	85.7	28.7	69.3	65.1	100	48.5
PointGroup [3]	63.6	100	76.5	62.4	50.5	79.7	11.6	69.6	38.4	44.1	55.9	47.6	59.6	100	66.6	75.6	55.6	99.7	51.3
DyCo3D [2]	64.1	100	84.1	89.3	53.1	80.2	11.5	58.8	44.8	43.8	53.7	43.0	55.0	85.7	53.4	76.4	65.7	98.7	56.8
SSTNet [5]	69.8	100	69.7	88.8	55.6	80.3	38.7	62.6	41.7	55.6	58.5	70.2	60.0	100	82.4	72.0	69.2	100	50.9
HAIS [1]	69.9	100	84.9	82.0	67.5	80.8	27.9	75.7	46.5	51.7	59.6	55.9	60.0	100	65.4	76.7	67.6	99.4	56.0
DKNet [13]	71.8	100	81.4	78.2	61.9	87.2	22.4	75.1	56.9	67.7	58.5	72.4	63.3	98.1	51.5	81.9	73.6	100	61.7
TD3D [4]	75.1	100	77.4	86.7	62.1	93.4	40.4	70.6	81.2	60.5	63.3	62.6	69.0	100	64.0	82.0	77.7	100	61.2
ISBNet [7]	75.7	100	90.4	73.1	67.8	89.5	45.8	64.4	67.0	71.0	62.0	73.2	65.0	100	75.6	77.8	77.9	100	61.4
SPFormer [9]	77.0	90.3	90.3	80.6	60.9	88.6	56.8	81.5	70.5	71.1	65.5	65.2	68.5	100	78.9	80.9	77.6	100	58.3
Mask3D [8]	78.0	100	78.6	71.6	69.6	88.5	50.0	71.4	81.0	67.2	71.5	67.9	80.9	100	83.1	83.3	78.7	100	60.2
OneFormer3D	80.1	100	97.3	90.9	69.8	92.8	58.2	66.8	68.5	78.0	68.7	69.8	70.2	100	79.4	90.0	78.4	98.6	63.5

Table 3. Per-class 3D instance segmentation mAP₅₀ scores on the ScanNet hidden test split at 17 Nov. 2023.

Method	Component	Device	Component time, ms	Total time, ms	mAP ₅₀
PointGroup [3]	Backbone Grouping ScoreNet	GPU GPU+CPU GPU	48 218 106	372	56.7
SSTNet [5]	Superpoint extraction Backbone Tree Network ScoreNet	CPU GPU GPU+CPU GPU	168 26 148 58	400	64.3
HAIS [1]	Backbone Hierarchical aggregation Intra-instance refinement	GPU GPU+CPU GPU	50 116 90	256	64.4
SoftGroup [11]	Backbone Soft grouping Top-down refinement	GPU GPU+CPU GPU	48 121 97	266	67.6
Mask3D [8] w/o clustering	Backbone Mask module Query refinement	GPU GPU GPU	106 100 15	221	73.0
Mask3D [8]	Backbone Mask module Query refinement DBSCAN clustering	GPU GPU GPU CPU	106 100 15 19630	19851	73.7
SPFormer [9]	Superpoint extraction Backbone Superpoint pooling Query decoder	CPU GPU GPU GPU	168 26 4 17	215	73.9
OneFormer3D	Superpoint extraction Backbone Superpoint pooling Query decoder	CPU GPU GPU GPU	168 26 4 23	221	78.1

Table 4. The inference time and instance segmentation accuracy on the ScanNet validation split. We show comparable inference time to the fastest SPFormer [9], being significantly more accurate than all existing methods.

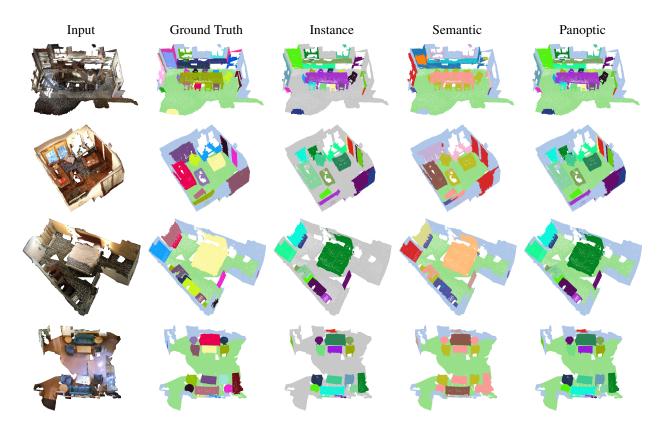


Figure 1. OneFormer3D predictions on ScanNet validation split. Left to right: an input point cloud, a ground truth panoptic mask, predicted 3D instance, 3D semantic, and 3D panoptic segmentation masks.

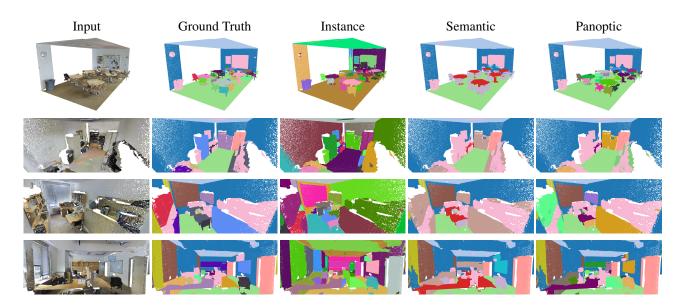


Figure 2. OneFormer3D predictions on the S3DIS Area-5 split. Left to right: an input point cloud, a ground truth panoptic mask, predicted 3D instance, 3D semantic, and 3D panoptic segmentation masks.

References

- Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and Xinggang Wang. Hierarchical aggregation for 3d instance segmentation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 15467–15476, 2021. 2, 3
- [2] Tong He, Chunhua Shen, and Anton Van Den Hengel. Dyco3d: Robust instance segmentation of 3d point clouds through dynamic convolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 354–363, 2021. 2
- [3] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point grouping for 3d instance segmentation. In *Proceedings of* the IEEE/CVF conference on computer vision and Pattern recognition, pages 4867–4876, 2020. 2, 3
- [4] Maksim Kolodiazhnyi, Danila Rukhovich, Anna Vorontsova, and Anton Konushin. Top-down beats bottom-up in 3d instance segmentation. arXiv preprint arXiv:2302.02871, 2023. 2
- [5] Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, and Kui Jia. Instance segmentation in 3d scenes using semantic superpoint tree networks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 2783– 2792, 2021. 2, 3
- [6] Gaku Narita, Takashi Seno, Tomoya Ishikawa, and Yohsuke Kaji. Panopticfusion: Online volumetric semantic mapping at the level of stuff and things. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4205–4212. IEEE, 2019. 2
- [7] Tuan Duc Ngo, Binh-Son Hua, and Khoi Nguyen. Isbnet: a 3d point cloud instance segmentation network with instanceaware sampling and box-aware dynamic convolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13550–13559, 2023. 2
- [8] Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and Bastian Leibe. Mask3d: Mask transformer for 3d semantic instance segmentation. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 8216–8223. IEEE, 2023. 2, 3
- [9] Jiahao Sun, Chunmei Qing, Junpeng Tan, and Xiangmin Xu. Superpoint transformer for 3d scene instance segmentation. In *Proceedings of the AAAI Conference on Artificial Intelli*gence, pages 2393–2401, 2023. 2, 3
- [10] Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, and Andrea Tagliasacchi. Neuralbf: Neural bilateral filtering for topdown instance segmentation on point clouds. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 551–560, 2023. 2
- [11] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and Chang D Yoo. Softgroup for 3d instance segmentation on point clouds. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 2708– 2717, 2022. 3
- [12] Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scenegraphfusion: Incremen-

tal 3d scene graph prediction from rgb-d sequences. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7515–7525, 2021. 2

- [13] Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, and Weicai Zhong. 3d instances as 1d kernels. In *European Conference on Computer Vision*, pages 235–252. Springer, 2022. 2
- [14] Zhiliu Yang and Chen Liu. Tupper-map: Temporal and unified panoptic perception for 3d metric-semantic mapping. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1094–1101. IEEE, 2021.