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A. Per-category Scores
Since segmentation tasks are severely imbalanced in terms
of categories, an averaged score might shadow some cru-
cial performance issues. To provide a complete picture, we
report 3D panoptic segmentation scores on the ScanNet val-
idation split and on the S3DIS Area-5 split in Tab. 1 and 2,
respectively. Besides, per-category 3D instance segmenta-
tion scores on the ScanNet test split are listed in Tab. 3. Evi-
dently, OneFormer3D segments every single category more
precisely than competitors on the ScanNet validation split.
Panoptic segmentation scores on S3DIS have never been re-
ported so far, so we establish a baseline for future research.
On the ScanNet test split, our method outperforms others in
segmenting objects of 11 out of 18 categories.

B. Performance
To provide a comprehensive overview of the proposed
method, we also conduct a detailed performance analy-
sis. Specifically, we decompose our method into several
self-sufficient and replaceable components: creating super-
points, extracting 3D features with a sparse 3D CNN, flex-
ible pooling, and running a query decoder. We run a pro-
filer to measure the time required for each component to
proceed. Similarly, we identify components of competing
approaches, and report the inference time component-wise
in Tab. 4. The runtime is measured on the same RTX
3090 GPU. Compared with the SPFormer baseline, One-
Former3D processes a few additional queries for semantic
segmentation, and uses another initialization strategy for in-
stance queries. The computation overhead is though minor,
causing a less than 3% increase of inference time. Overall,
we can claim, that OneFormer3D is on par of SPFormer,
which is the fastest among the profiled approaches.

C. Qualitative Results
To give an intuition on how the segmentation scores relate
to actual segmentation quality, we provide additional visu-
alizations of original and segmented point clouds from the
ScanNet (Fig. 1) and S3DIS (Fig. 2) datasets.
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SceneGraphFusion [12] 31.5 67.6 25.4 13.9 22.2 47.2 10.5 16.4 12.6 26.4 56.4 22.9 31.3 28.0 38.3 38.0 32.3 34.8 63.2 30.4 11.7
PanopticFusion [6] 33.5 40.4 76.4 23.8 35.8 46.7 42.1 34.8 18.0 19.3 16.4 26.4 10.4 16.1 16.6 39.5 36.3 76.1 36.7 31.0 27.7
TUPPer-Map [14] 50.2 68.5 74.6 47.1 60.3 45.8 49.6 52.5 38.1 38.7 53.5 42.0 38.8 44.6 32.6 47.5 52.3 74.5 45.5 57.4 39.9
OneFormer3D 71.2 78.9 94.9 60.9 80.4 88.8 74.4 74.4 61.5 58.9 55.2 57.1 55.8 65.7 62.5 63.3 71.7 95.9 73.7 85.5 65.2

Table 1. Per-class 3D panoptic segmentation PQ scores on the ScanNet validation split.
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OneFormer3D 62.2 92.0 96.5 81.5 0.0 40.9 66.2 81.4 43.9 87.0 48.5 46.0 81.3 43.9

Table 2. Per-class 3D panoptic segmentation PQ scores on the S3DIS Area-5 split.
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NeuralBF [10] 55.5 66.7 89.6 84.3 51.7 75.1 2.9 51.9 41.4 43.9 46.5 0.0 48.4 85.7 28.7 69.3 65.1 100 48.5
PointGroup [3] 63.6 100 76.5 62.4 50.5 79.7 11.6 69.6 38.4 44.1 55.9 47.6 59.6 100 66.6 75.6 55.6 99.7 51.3
DyCo3D [2] 64.1 100 84.1 89.3 53.1 80.2 11.5 58.8 44.8 43.8 53.7 43.0 55.0 85.7 53.4 76.4 65.7 98.7 56.8
SSTNet [5] 69.8 100 69.7 88.8 55.6 80.3 38.7 62.6 41.7 55.6 58.5 70.2 60.0 100 82.4 72.0 69.2 100 50.9
HAIS [1] 69.9 100 84.9 82.0 67.5 80.8 27.9 75.7 46.5 51.7 59.6 55.9 60.0 100 65.4 76.7 67.6 99.4 56.0
DKNet [13] 71.8 100 81.4 78.2 61.9 87.2 22.4 75.1 56.9 67.7 58.5 72.4 63.3 98.1 51.5 81.9 73.6 100 61.7
TD3D [4] 75.1 100 77.4 86.7 62.1 93.4 40.4 70.6 81.2 60.5 63.3 62.6 69.0 100 64.0 82.0 77.7 100 61.2
ISBNet [7] 75.7 100 90.4 73.1 67.8 89.5 45.8 64.4 67.0 71.0 62.0 73.2 65.0 100 75.6 77.8 77.9 100 61.4
SPFormer [9] 77.0 90.3 90.3 80.6 60.9 88.6 56.8 81.5 70.5 71.1 65.5 65.2 68.5 100 78.9 80.9 77.6 100 58.3
Mask3D [8] 78.0 100 78.6 71.6 69.6 88.5 50.0 71.4 81.0 67.2 71.5 67.9 80.9 100 83.1 83.3 78.7 100 60.2
OneFormer3D 80.1 100 97.3 90.9 69.8 92.8 58.2 66.8 68.5 78.0 68.7 69.8 70.2 100 79.4 90.0 78.4 98.6 63.5

Table 3. Per-class 3D instance segmentation mAP50 scores on the ScanNet hidden test split at 17 Nov. 2023.



Method Component Device
Component

time, ms
Total

time, ms mAP50

PointGroup [3]
Backbone GPU 48

372 56.7Grouping GPU+CPU 218
ScoreNet GPU 106

SSTNet [5]

Superpoint extraction CPU 168

400 64.3
Backbone GPU 26
Tree Network GPU+CPU 148
ScoreNet GPU 58

HAIS [1]
Backbone GPU 50

256 64.4Hierarchical aggregation GPU+CPU 116
Intra-instance refinement GPU 90

SoftGroup [11]
Backbone GPU 48

266 67.6Soft grouping GPU+CPU 121
Top-down refinement GPU 97

Mask3D [8]
w/o clustering

Backbone GPU 106
221 73.0Mask module GPU 100

Query refinement GPU 15

Mask3D [8]

Backbone GPU 106

19851 73.7
Mask module GPU 100
Query refinement GPU 15
DBSCAN clustering CPU 19630

SPFormer [9]

Superpoint extraction CPU 168

215 73.9
Backbone GPU 26
Superpoint pooling GPU 4
Query decoder GPU 17

OneFormer3D

Superpoint extraction CPU 168

221 78.1
Backbone GPU 26
Superpoint pooling GPU 4
Query decoder GPU 23

Table 4. The inference time and instance segmentation accuracy on the ScanNet validation split. We show comparable inference time to
the fastest SPFormer [9], being significantly more accurate than all existing methods.
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Figure 1. OneFormer3D predictions on ScanNet validation split. Left to right: an input point cloud, a ground truth panoptic mask, predicted
3D instance, 3D semantic, and 3D panoptic segmentation masks.

Input Ground Truth Instance Semantic Panoptic

Figure 2. OneFormer3D predictions on the S3DIS Area-5 split. Left to right: an input point cloud, a ground truth panoptic mask, predicted
3D instance, 3D semantic, and 3D panoptic segmentation masks.
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