
Small Steps and Level Sets: Fitting Neural Surface Models with Point Guidance

Supplementary Material

A. Further Algorithm Details 1
A.1. Initialization 1
A.2. Optimization and Resampling 3
A.3. Algorithm with ground truth normals 3

B. Implementation Details 3
B.1. Domain and Preprocessing 3
B.2. Moving the Guiding Points 3
B.3. Network implementation and Optimization . 3
B.4. Projection and Resampling 6

C. Convergence and hyperparameter sensitivity 6

D. Runtime comparison and ablation 6

E. Experimental Details 7
E.1. Other Methods 7
E.2. Metrics . 7

F. Level Set Complexity 8
F.1. Four Propositions 8
F.2. SDF and Level Set Properties 8
F.3. Parallel/Offset Surface Properties 8
F.4. Important Definitions and Results 9
F.5. Proof of the Four Propositions. 11

F.5.1 Proof of Statement 1’s Proposition . 11
F.5.2 Proof of Statement 2’s Proposition . 11
F.5.3 Proof of Statement 3’s Proposition . 13
F.5.4 Proof of Statement 4’s Proposition . 13

F.6. Summary 13

G. More visualizations 14

A. Further Algorithm Details

We provide more details on the high level workings of
our algorithm here. For implementation details, see Ap-
pendix B. We show visualzations of our algorithm in 2D in
Fig. 9 (one step with explanations) and in Figs. 10 and 11
(all steps for one shape).

A.1. Initialization

As explained in Sec. 4, we initialize our network to the ex-
terior level set of radius δinit = 16δX . We mentioned that
we can do this robustly in Sec. 4.3 because (1) δinit ≫ δX
so we can estimate good normals for any y ∈ Ωδinit , and (2)
higher radius exterior level sets are a lot less complex.

Figure 8. Visualization of our fast initialization in 2D.

To see (1), note that for any y ∈ Ωδinit , the ground truth
normal ny is given by

nGT
y = ̂y − x⋆

S(y) (21)

where x⋆
S(y) is the closest point on S to y. We cannot cal-

culate this as we do not know S, but we have X which we
assume is sampled densely from S. In particular, we as-
sume there is some sampling radius δX (which we approx-
imate for our algorithm). Thus ∥x⋆(y) − x⋆

S(y)∥2 ≈ δX
where x⋆(y) = x⋆

X (y) is the closest point in X to y. Since
at initialization ∥y − x⋆

X (y)∥2 ≈ δinit ≫ δX , it follows that
the direction of y − x⋆

S(y) ≈ y − x⋆
X (y), so our estimated

normal directions

ny = ̂y − x⋆
X (y) (22)

are fairly accurate.
To see (2), we refer the reader to Appendix F.
Thus to actually initialize the network at Ωδinit , we first

get our guiding points Y to densely sample the exterior
level set, estimate good normals for each guiding point us-
ing Eq. (22), and then optimize using our loss with a high
weighting for the approximate SDF loss as the approximate
SDF is fairly accurate with good normals.

We can quickly get our guiding points Y to densely sam-
ple Ωδinit by starting them at a sphere bounding X and move
them inwards at random directions until d(y,X) ≤ δinit.
We then find the closest point in X , x⋆

X (y), and move it
back along that line containing those two points until the
distance to the closest point X is exactly δinit. We show this
in Fig. 8 for 2D. However for complex shapes, Ωδinit may
still be somewhat complex, so to get a dense sampling of
the whole exterior level set we also simulate ‘bouncing’ off
the level sets to reach other surfaces.

Figure 9. Extended visualisation of one iteration of our algorithm (a-h), at two different points in time (1 and 2). This relates to the
algorithmic details explained in Appendix A.2.

A.2. Optimization and Resampling

One issue with optimizing the neural SDF Φ with respect
to the guiding points Y is that the movement of the guiding
points Y from Sec. 4.1 are unlikely to be consistent with
each other. The surface implied by Y is likely to be quite
rough and have outliers, so it is unlikely that SDF optimiza-
tion, which requires is regularized to make Φ fairly smooth,
will have its zero level set surface R interpolating Y . This
leads to a high optimization loss and defects in Φ. This is
a problem, as we use SDF values and gradients to resam-
ple the zero level set and to get normals for the new points
(which is important for figuring out where to move Y next),
so the neural SDF must be sufficiently faithful to a true SDF.

Thus we do two rounds of SDF optimization. In the first
round, we optimize the SDF parameters with low regular-
ization, leading to R and Y being close but inconsistent (1e
and 2e in Fig. 9). We then project Y back onto the newly op-
timized R (1f and 2f in Fig. 9). We then optimize the SDF
parameters with the new Y with high regularization, which
leads to Φ being much more faithful to SDF properties, and
R and Y being quite consistent (1g and 2g in Fig. 9).

Finally we resample the guiding points Y on this new
surface R (1h and 2h in Fig. 9). To do this, we first sample
noisy points around y ∈ Y and then project them to the
surface (using the fact that Φ is now a good approximation
of an SDF) to get a dense sampling of R. We then use
farthest point sampling on the projected points to also get a
uniform sampling of fixed size.

Note that this method is similar to predictor-corrector
methods for following the zero path [33], where we first
produce a ‘predictor’ point θ not on the zero path (this is
given by the first optimization with high regularisation, it is
not on the zero path as it is not a good SDF) but in the right
direction for optimizing the loss. We then apply ‘corrector’
iterations to bring it back on the path (the second part of the
optimization).

A.3. Algorithm with ground truth normals

We note that in our initialization, if we have ground truth
normals for each x ∈ X , a better way to get good approx-
imate normals for y on some exterior level set of X is to
find the closest point in X , x⋆

X (y), and use its ground truth
normal.

Thus for our algorithm with ground truth normals, we
first optimize for the level set of radius δinit using our cur-
rent initialization procedure except with our better normal
estimates. We then apply the initialization method again
except for the level set of radius δ0, again using our bet-
ter normal estimates, noting that we start our optimization
from the state of the network after the first run. We keep
applying this for smaller level set radii until we reach δf ,
and then finally optimize on our input points. However as
we have the ground truth normals for our input points, we

still use the approximate sdf loss at this last stage of opti-
mization unlike our version of the algorithm without ground
truth normals.

B. Implementation Details
We primarily use PyTorch [36] for our implementation. Dis-
tance to set queries are efficiently done using the KeOps li-
brary [14] within the PyTorch framework. For visualiza-
tion and debugging during training we used the rerun.io
library.

B.1. Domain and Preprocessing

We use the domain [−1.1, 1.1]3 ⊂ R3. Given input points,
we first center them around the origin, and then isotropically
scale it down by 1.2 times the norm of the furthest point
from the origin. Thus after preprocessing the input points
fit within the closed ball centered at the origin of radius 5

6 .
To calculate δX , our conservative estimate of the radius

of sampling of X , we find the closest 4 neighbours for each
x ∈ X , i.e., knn(x, 1),...,knn(x, 4) where knn(x, k) is the
distance to the kth closest neighbour to x. We then sepa-
rately sort the distances for each k, and take the largest 5%
of each of these. δX is then the average of all of these dis-
tances.

B.2. Moving the Guiding Points

We do our implementation in using the KeOps library [14]
within the PyTorch framework due to its ability to handle
computations that usually use a large amount of memory to
do efficiently. In particular we define a cost function for the
cone Cy and for the half ball Hy in order to implement the
optimization in Eq. (12) as a single argmin using KeOps.
We set ay = 0.9 and sm = 0.1.

Furthermore we note we remove guiding points y if there
is no x ∈ X inside the set Hy∪Cy . We also remove guiding
points y if get get moved to a point y′ that is in the outside
region per the current Φ, i.e., Φ(y′, θ) > ε for some ε >
0. The intuition behind this is that sometimes our guiding
points, when moving inward, close up a hole in the shape
and thus move to the outside of the volume enclosed by the
current network’s zero level set.

After moving the points, we also check whether they ac-
tually went into the interior of the current R by querying Φ
for whether Φ(y) < 0, y ∈ Y . If the adjustment distance
was very small, then y is probably close to Ωδ and violating
this is fine. Otherwise, such points are removed.

B.3. Network implementation and Optimization

Architecture. We use a parameter encoding based coordi-
nate network as inspired by NGLOD [42], where learnable
features are stored in space. We use a 2 layer network with
256 hidden units. The network takes in the position, as well

Figure 10. Visualization of our method in 2D (first half shown).

Figure 11. Visualization of our method in 2D (second half shown)

as Fourier feature [43] and feature grid [31, 42] encodings
of the position. We use a dense grid of depth 7 and 2 val-
ues per level. The grid features are more than 99% of our
parameters.

We implement this using the implementation of such net-
works given by SDFStudio [48], which builds on top of
NerFStudio [44]. The benefit of this is that they have imple-
mented many methods and thus their framework has many
tricks for both time and learning efficiency (for example us-
ing fast fully fused MLPs from tiny-cuda-nn [30]).

Note that we cannot use a sparse structure, where the ma-
jority of features are concentrated around Y , since our guid-
ing points Y change during optimization. We also do not
use the hash map implementation of Istant-NGP[31] since
we found it to give undesirable roughness.

Sampling. When sampling domain points (i.e., from D),
we use a combination of grid points (we sample the grid
with 256 values per dimension) and the octree sampling
from OG-INR [25], where we build the octree around the
current Y at each small step. We also weight domain sam-
ples more if they are closer to the zero level set.

Losses. When we implement our loss terms, we have
Lzls(θ,Y (computed on Y),Linput(θ,X , δ) (computed on
X), LY

eik(θ) (computed on Y), LD
eik(θ) (computed on D),

Ls̃df(θ,Y) (computed on D), Lnormal(θ,Y,N (Y)) (com-
puted on Y) and Lpull(θ,Y) (computed on D). Our weight-
ings for these losses are 100, 100, 2, 1, 0, 0, 0 when fine-
tuning. Note that we do not use the approximate SDF loss
when finetuning on the input points as they might not be
complete or might have outliers (the preprocessed subset
still has interior points for some shapes). When confident
in our normals (e.g., at initialization or for our method with
input GT normals) we use 100, 100, 10, 50, 50, 10, 20 at the
start (if it is initialization and we need to drastically change
our shape) and 100, 100, 5, 2, 2, 2, 1 at finetuning (as close
to the zero level set is most important). During our small
steps, our first optimization has the loss weightings 500,
500, 10, 2, 100, 0, 1 (we want to overfit to the new guid-
ing point locations, with some compromises to whether Φ
is a good SDF), and 100, 100, 50, 50, 10, 0, 50 in our second
optimization (now that the new zero level set is determined,
we want to make Φ be an SDF).

B.4. Projection and Resampling

When projecting points to the zero level set, we apply the
standard SDF projection formula with 50 iterations, and af-
terwards remove points where we this has failed. We check
this by (1) querying Φ after projection to see if the SDF
is far away from 0, and (2), check the gradient of Φ when
querying, as if it is not close to 1 then the point probably
became stuck during projection iterations.

To resample the zero level set, we first add Gaussian
noise to each current sample, and project these points back

Guidance Squared Chamfer ↓ IoU ↑
δf Mean Median Std Mean Median Std

0.005 1.02e-4 9.92e-5 5.94e-5 0.3340 0.1687 0.3129
0.010 9.01e-5 4.68e-5 7.77e-5 0.7987 0.9420 0.2674
0.015 8.94e-5 7.17e-5 6.72e-5 0.8958 0.9408 0.1003
0.020 9.95e-5 7.13e-5 7.28e-5 0.8712 0.9090 0.1109
0.5δX 1.06e-4 9.50e-5 5.67e-5 0.2531 0.1730 0.2303
δX 5.51e-5 4.87e-5 3.12e-5 0.9153 0.9598 0.0906
2δX 1.01e-4 7.45e-5 7.64e-5 0.8717 0.9350 0.1220

Table 4. Sensitivity analysis on the 20 highest SION ShapeNet
shapes. We only change the values of our level set radii δ by vary-
ing the final radii δf , and setting the initial radii to δ0 = 16δf .
Note that δX is an adaptive value (bottom three rows); on these 20
shapes it has a mean of 0.00988 and a range of [0.00582, 0.01370].

to the zero level set. We then apply farthest point sampling
to get it to a fixed sample size.

We also oversample on regions that need to move more.
We determine this by the distance of the current samples
to the input point cloud. We find this improves stability of
the steps (the optimization has more points to guide in in
areas it needs to change) and convergence speed (the opti-
mization is more likely to interpolate those points with the
re-weighting for a fixed number of iterations).

We determine when the small steps have converged to
the level set by computing the distance of our guiding points
to the input points, and determining whether every guiding
point is within δ + ε of an input point, where ε = 1e− 2.

C. Convergence and hyperparameter sensitiv-
ity

We provide a sensitivity analysis on the final level set radii
δf in Tab. 4, which sheds light on the two cases where the
point moving strategy does not converge to the GT points.
First note that our choice of δf = δX performs the best
(δX computes an approximate sampling radius per shape).
Case 1: if δf is smaller than the gap between input points,
then many guiding points permeate the surface of the shape.
This leads to a sharp reduction in performance (δf = 0.005,
0.5δX). Case 2: if the entry to the shape’s concavities are
smaller than δf , then such concavities will not be explored.
We found that increasing δf led to a gradual decrease in
performance (δf = 0.015, 0.020, 2δX), while still outper-
forming competing methods.

D. Runtime comparison and ablation
We compare our average runtime to other methods in Tab. 5.
Our method’s runtime is primarily dependent on the com-
plexity of the shape being reconstructed, which is demon-
strated in Fig. 7. The runtime is dominated by optimizing
Φ (Line 7 of Alg. 1), which is repeated as many times as is
needed to explore concave regions of the shape. Thus for
the simplest shapes, our method’s runtime is similar to OG-

Method Parameters Time per iter. (s) Num iters Time (s)

N Est. +SPSR - - - 42
SIREN (wo n) 264K 0.052 10000 520
SAL 2.1M 0.175 10000 1750
DiGS 264K 0.120 10000 1200
SAP 120K - - 330
OG-SIREN 264K 0.158 600 135
OG-NGLOD 68.7M 0.173 300 92
SDF + n (Our Impl.) 17.5M 0.052 2100 180
SDF (Our Impl.) 17.5M 0.052 2100 180
PG-SDF + n (Ours) 17.5M 0.052 7500 430
PG-SDF (Ours) 17.5M 0.052 13500 600

Table 5. Time and number of parameters for each model on ShapeNet. We ran our experiments on a single Nvidia RTX 2080 GPU and
an i7-8700K CPU. Since our method adapts the number of iterations based on the complexity of the shape, we report average times here
(same has been done for OG-SIREN and OG-NGLOD, whose initialisation time varies based on shape complexity).

Guidance Squared Chamfer ↓ IoU ↑ Time(min)
Y0 Y δ0 δf Mean Median Std Mean Median Std

– – 2.41e-3 1.18e-3 2.65e-3 0.2795 0.2255 0.2078 1.41
✓ – – 2.63e-4 1.91e-4 2.31e-4 0.5694 0.6091 0.2278 2.23
✓ ✓ 4 2 9.89e-5 7.70e-5 7.95e-5 0.8657 0.9163 0.1219 10.8
✓ ✓ 1 1 8.08e-5 7.52e-5 5.66e-5 0.8538 0.9386 0.1602 19.8
✓ ✓ 4 1 5.51e-5 4.87e-5 3.12e-5 0.9153 0.9598 0.0906 22.7

Table 6. Ablation results on the 20 highest SION ShapeNet shapes, with average runtime. Note that since these are the most difficult
shapes, the runtimes are much higher than the average over the whole dataset. Y0: uses our SDF initialization strategy instead of spherical
initialization [15]. Y: uses our point guidance strategy. δ0/δf : starting and final level set radii, given in multiples of δX .

SIREN, and for most shapes, our method’s runtime is sim-
ilar to SIREN (wo n). Note that only OG-SIREN and OG-
NGLOD also change their runtime based on the complexity
of the shape, all other methods have a fixed runtime. Even
with more iterations, they can fail to converge on complex
shapes. We also extend our ablations to include average
time in Tab. 6, which shows that we can outperform other
methods even with a variant of our method that is twice as
fast as our default.

E. Experimental Details

E.1. Other Methods

For SAL, IGR, SIREN, FFN [43] and NSP we report results
from the papers of NSP [46], and note that all these methods
have code available.

For DiGS [5] and OG-SIREN/OG-NGLOD [25] we re-
port the results from their paper and have also ran the im-
plementation released by the authors. For SAP [39] we use
the results from the OG-INR paper [25], and have double
checked the results with the implementation released by the
authors.

Following OG-INR, for SPSR [22] and for normal es-
timation, we use the implementation in Open3D [50] with
default settings.

E.2. Metrics

We follow the evaluation procedure of DiGS [5] and
OG-INR [25], which uses Squared Chamfer and IoU on
ShapeNet.

Squared Chamfer distance is defined as

dsqC (χ1, χ2) = dsq
C⃗
(χ1, χ2) + dsq

C⃗
(χ2, χ1) (23)

dsq
C⃗
(χ1, χ2) =

1

|χ1|
∑

x1∈χ1

min
x2∈χ2

∥x1 − x2∥22 . (24)

(25)

Note that the distances are in the same scaling as the in-
put/ground truth point cloud, they have not applied any scal-
ing before calculating distances.

For the volumetric IoU, following Occupancy Networks,
given the 100k points randomly sampled in the space pro-
vided by the dataset, the ground truth occupancy labels
OGT (x) ∈ {0, 1} provided by the dataset, and the predicted
occupancy OΦ(x) = [[Φ(x) < 0]], the IoU is given by

IoUχ(OGT , OΦ) =

∑
x∈χ OGT (x) and OΦ(x)∑
x∈χ OGT (x) or OΦ(x)

. (26)

F. Level Set Complexity
Our aim in this section is to expand upon the observation
in the main paper that the exterior a-level sets Ωa (a ≥ 0)
generally become less complex as a increases. In particular,
Ωa for a > 0 is often less complex than the zero level set
Ω0 = ∂V . We make (and formalize) four statements in F.1.

Before the statements, let us clarify relevant definitions.
Identical to the main paper, we consider our shape to be
an open volume V ⊂ D where the domain of the volume
D ⊂ R3 is compact. We are interested in properties of the
exterior a-level set Ωa of the surface ∂V (a ≥ 0) using the
definition of an exterior a-level set from the main paper. We
also use the definition of a SDF from the main paper, and
use FV to denote the SDF to V .

We will further assume that the surface ∂V is regular,
which we now define.

Definition F.1. A surface ∂V is regular if at every point on
∂V the SDF FV is smooth and at least one partial derivative
of the SDF is nonzero. Equivalently, at each point x ∈ ∂V
there exists a local parameterization x(u, v) from an open
subset of R2 to a neighbourhood of x such that x(u, v) is a
smooth homeomorphism and x(u, v) has linearly indepen-
dent partial derivatives.

Note that this is a relatively mild assumption as we can
get regular approximations to our surface within any toler-
ance.Furthermore let us denote the convex hull of a set S
by conv(S), and define the diameter of a surface by the fol-
lowing.

Definition F.2. The diameter of a surface ∂V , denoted d∂V ,
is the maximum distance between any two points on ∂V

d∂V = sup
x,y∈∂V

d(x, y) (27)

F.1. Four Propositions

1. As a increases Ωa decreases in SION to zero quickly.

Proposition F.3. For any sphere R surrounding Ωa,
SION(Ωa; R) is zero for all a > α, where α depends
only on Ω0. Furthermore, α ≤ d∂V .

2. As a increases Ωa depends less on the concave regions
of the initial shape.

Proposition F.4. As a increases, Ωa limits towards the
exterior a-level set of A0 = Ω0 ∩ ∂conv(Ω0). In partic-
ular for any a, exterior a-level set Ωa does not depends
on points in Ω0 that are further than d∂V

2a to ∂conv(Ω0).

3. As a increases Ωa limits to a convex shape.

Proposition F.5. As a → ∞, the Hausdorff distance be-
tween Ωa and the boundary of its convex hull ∂conv(Ωa)
limits to 0. In particular, for any a > d∂V the Hausdorff
distance is bounded by a−

√
a2 − d2∂V .

4. As a increases Ωa limits to a sphere, though extremely
slowly.

Proposition F.6. As a increases the principal curvatures
of Ωa either stay zero or limit to − 1

a , which is the curva-
ture of a sphere of radius a (equivalently the radii of the
principal curvatures either stay ∞ or limits to a). Fur-
thermore as a → ∞, exterior a-level set Ωa limits to a
sphere.

We start by restating properties of SDFs and parellel/off-
set surfaces in Appendix F.2 and Appendix F.3, respectively.
We then give our definitions and prove useful results in Ap-
pendix F.4. Finally, we prove each of the four above propo-
sitions in Appendix F.5.

F.2. SDF and Level Set Properties

We first note some basic properties of SDFs [28]. Let z be
any point in D. If there is a unique closest point x⋆(z) in
∂V to z, then
• FV is differentiable at z
• z − x⋆(z) = FV(z)n(x

⋆(z))
• ∇zFV(z) = n(x⋆(z))
• ∥∇zFV(z)∥2 = ∥n(x⋆(z))∥2 = 1

where n(x⋆(z)) is the outward normal of the surface ∂V at
x⋆(z) (which exists since any point on ∂V is its own unique
closest point to ∂V so FV is differentiable there).

Note that there is a unique closest point almost every-
where in D (i.e., the set of points have have multiple clos-
est points is a set of measure zero), so the normal field is
also defined almost everywhere. Furthermore n(x) is de-
fined everywhere on the shape’s surface ∂V as the surface
is smooth.

F.3. Parallel/Offset Surface Properties

While exterior level sets of SDFs are not deeply studied (to
our knowledge), we note that surfaces formed by offsetting
a constant value a in the normal direction are well studied.
These are called parallel surfaces in differential geometry
[13] and offset surfaces in computer aided design [18, 37].
Let Ω0 be a regular surface with parameterization x0(u, v) :
U ⊂ R2 → R3 with unit normal n0(u, v), then the parallel
or offset surface of distance a, which we will denote Ω0+a,
is defined by

xa(u, v) = x0(u, v) + an0(u, v). (28)

Note that the exterior a-level set is a subset of the par-
allel/offset surface of distance a: Ωa ⊆ Ω0+a, which we
prove in Lemma F.7 a.

Let the principal curvatures at x0(u, v) be κ0,1(u, v)
and κ0,2(u, v), with respective (unit) principal directions.
This means that any curve on the surface Ω0 that passes

Figure 12. A shape (shown by the black boundary) with 5 points a − e identified. Left: The convex hull is shown in blue, and the SION
surface point (relative to a surrounding sphere) are shown in red. Right: the normal direction and tangent lines are shown for each point.
The normal direction is red if it is a SION point, and the tangent line is red if it is not supporting. See Appendix F.6 for the case each point
belongs to.

through the point parameterised by u, v in the ith princi-
pal direction is well approximated by a circle of radius
r0,i(u, v) =

∣∣∣ 1
κ0,i(u,v)

∣∣∣.
It turns out that xa(u, v) not only has the same normal

direction na(u, v) = n0(u, v), but it also has the same prin-
cipal directions and center for the curves in each principal
direction [18], with principal curvatures

κa,i(u, v) =
κ0,i(u, v)

1− aκ0,i(u, v)
(29)

and principal radii

ra,i(u, v) =

∣∣∣∣ 1

κa,i(u, v)

∣∣∣∣ (30)

=

{
r0,i(u, v) + a κa,i(u, v) < 0

r0,i(u, v)− a κa,i(u, v) > 0
. (31)

F.4. Important Definitions and Results

We first show that the exterior a-level set Ωa is a subset of
the parallel surface Ω0+a. This allows us to use the local
parameterization xa(u, v) of Ω0+a for Ωa. Note that the lo-
cal parameterization xa(u, v) inherits the smoothness from
x0(u, v), however Ω0+a might not be regular as the offset
can cause the parameterization to not be one-to-one and the
partial derivatives to not be linearly independent. Further-
more, FV may not be smooth at all points on Ω0+a and thus
Ωa.

Lemma F.7. Assume FV is an SDF with a smooth zero
level set Ω0. Then for all a ≥ 0,

a. for all p ∈ Ωa, we have p = x + an(x) for any x ∈ Ω0

that is a closest point to p. Thus Ωa ⊆ Ω0+a.

b. for any p ∈ Ωa that has a unique closest point x ∈ Ω0,
FV is differentiable at p, with p = x + an(x) and
n(p) = n(x).

c. Ωa is piecewise smooth, i.e., the set of points p ∈ Ωa for
which FV is not differentiable is a set of measure zero
relative to the surface Ωa.

Proof.

a. Consider p ∈ Ωa and let x ∈ Ω0 be a closest point in Ω0

to p (so ∥p− x∥ = a). Let us assume that p− x = ad
where ∥d∥ = 1 and d ̸= n(x). Then by the smoothness
of Ω0, ∃x̂ ∈ Ω0 such that x̂ = x + δd′, where d′ ⊥
n(x) and ⟨d′, d⟩ > 0. Thus x̂ lies on the halfspace
{z | ⟨z, d⟩ > ⟨x, d⟩}, so ∥x̂ − p∥ < a. This is a
contradiction, as d(p,Ω0) = a.

Note this further implies that Ωa ⊆ Ω0+a.

b. Follows from the SDF properties listed in Appendix F.2.

c. We want to show that the set of points p ∈ Ωa for
which FV is not differentiable is a set of measure

zero. Let us assume there is some measurable sub-
set A ⊂ Ωa where FV is not differentiable. Then for
any point p ∈ A, there exists at least two different
closest points in Ω0 to p, x1, x2, ..., xk. Then consider
p′ = p+ εn(x1)+n(x2)+...+n(xk)

k .

Note that x1, x2, ..., xk must be closest points to p′ for
some small epsilon (as otherwise p must have another
closest point) and n(x1)+n(x2)+...+n(xk)

k ̸= 0 as then p
cannot be on the exterior. However doing this for all
p ∈ A would create a set for which FV is not differ-
entiable but have non-zero measure within D, which
cannot be the case by the SDF properties we listed ear-
lier. Thus no such A can exists.

Definition F.8. A point p ∈ S has a supporting hyperplane
for the set S if there exists a hyperplane P such that p ∈ P
and S is entirely contained within one of the two closed
half-spaces bounded by the hyperplane (note that p does not
need to be the only point in the intersection of the support-
ing hyperplane and S).

By the supporting hyperplane theorem, if a set is
nonempty and convex then every point on the boundary of
the set has a supporting hyperplane, and if if a set is closed,
has nonempty interior and has a supporting hyperplane at
each point on its boundary then it is convex [8].

Definition F.9. Let S be a surface. If a point p ∈ S has
a well defined normal, then its tangent hyperplane is the
unique hyperplane P such that x ∈ P and for any y ∈ P ,
y − x ⊥ n(x) (or s(y − x, n(x)) = 0). Furthermore we
define the closed interior tangent half space as the closed
half space bounded by the hyperplane that n(x) faces away
from: {z ∈ D | s(z − x, n(x)) ≤ 0}, and the open exterior
half space as the open half space bounded by the hyperplane
that n(x) faces towards: {z ∈ D | s(z − x, n(x)) > 0}.

Note that if a point on a surface has a well defined nor-
mal and has a supporting hyperplane, then its supporting
hyperplane is unique and is its tangent hyperplane [40].

Next we wish to compare exterior a-level sets to
the boundary of their convex hull ∂conv(Ωa) (note
∂conv(Ωa) ⊂ conv(Ωa) as Ωa is compact). In particular
we define the following three sets:
• Aa = ∂conv(Ωa)∩Ωa is the set of points in Ωa that coin-

cide with the boundary of the convex hull. These are the
points on the level set that have a supporting hyperplane.

• Ba = ∂conv(Ωa)\Ωa is the set of points on the boundary
of the convex hull that are not part of the level set.

• Ca = Ωa \ ∂conv(Ωa) is the set of points on the level
set that are not part of the boundary of the convex hull.
These are the points on the level set that do not have a
supporting hyperplane.

Finally we prove some useful results about convex hulls
and convex hulls of exterior a-level sets.

Lemma F.10. Aa is a parallel/offset surface of A0, i.e.,
Aa = A0+a. Furthermore every point p ∈ Aa has a well
defined normal and thus its supporting hyperplane is unique
and is its tangent hyperplane.

Proof. We first show that A0+a ⊆ Aa. Let x ∈ A0. Note
that its tangent hyperplane is its unique supporting hyper-
plane. Now x + an(x) ∈ Ωa as if d(x + an(x),Ω0) < a
then x cannot have a supporting hyperplane. Furthermore
the hyperplane tangent to n(x) at x+ an(x) must be a sup-
porting hyperplane for Ωa at x+an(x) as translating points
from Ω0 by distance a cannot take them to the other side of
that hyperplane. Thus x+ an(x) ∈ Aa.

We now show that Aa ⊆ A0+a. Let p ∈ Aa. Clearly
p = x + an(x) for some x ∈ Ω0. However if x ∈ B0,
then there is some z ∈ A0 such that n(z) = n(x) and
⟨n(x), z−x⟩ > 0. Furthermore z+an(z) ∈ Ωa and clearly
n(z + an(z)) = n(x + an(x)) and ⟨n(x + an(x)), z +
an(z)−x+an(x)⟩ > 0, so p = x+an(x) cannot be in Aa.
Thus x ∈ A0, so we have shown that Aa is a parallel/offset
surface of A0.

Finally, to show that every point p ∈ Aa has a well de-
fined normal we need to show that p has a unique closest
point to Ω0. Assume that p has two closest points x, y ∈ Ω0.
Thus p = x + an(x) = y + an(y) and x ̸= y and
n(x) ̸= n(y). However as proven above, x, y ∈ A0. Thus
since p has a supporting hyperplane, that same hyperplane
translated must be supporting at x and y. However x and y
have well defined normals, so their supporting hyperplanes
are unique and must be their tangent hyperplanes, which are
different. This is a contradiction. Thus every point p ∈ Aa

has a well defined normal and thus its supporting hyper-
plane is unique and is its tangent hyperplane.

Lemma F.11. Let p be a convex combination of points
p1, . . . , pn ∈ Aa that all lie on the same hyperplane and
have the same normal direction that is orthogonal to that
hyperplane. Then either p ∈ Aa or p ∈ Ba. Moreover, any
p ∈ Ba can be written as such a convex combination.

Proof. Let p be a convex combination of points
p1, . . . , pn ∈ Aa that all lie on the same hyperplane
and have the same normal direction that is orthogonal to
that hyperplane. This means that the hyperplane is their
shared tangent hyperplane, which must be a supporting
hyperplane for conv(Ω) at each of those points. Now p
lies on the hyperplane as the convex combination cannot
take it off the hyperplane, so the hyperplane is a supporting
hyperplane for p as well. Thus p is on the boundary of the
convex hull, so p ∈ ∂conv(Ωa), which means it is in Aa or
Ba.

Now let p ∈ Ba. As p ∈ ∂conv(Ωa) and ∂conv(Ωa) ⊂
conv(Ωa) (since Ωa is compact), by the Krein-Milman the-
orem p is a convex combination of points p1, ..., pn ∈ Aa

(since Aa contains the extreme points of Ωa). However
as p ∈ ∂conv(Ωa), there is a supporting hyperplane for
conv(Ωa) at p, so it follows that p1, ..., pn lie on that same
supporting hyperplane. This means that the hyperplane
is a supporting hyperplane for conv(Ωa) at p1, ..., pn as
well. However by Lemma F.10 p1, ..., pn have a unique
supporting hyperplane given by their tangent hyperplane, so
p1, ..., pn have the same normal direction that is orthogonal
to the supporting hyperplane.

Lemma F.12. We have that Aa is a parallel/offset surface
of A0, Ba is a parallel/offset surface of B0, and ∂conv(Ωa)
is a parallel/offset surface of the convex hull of the 0-level
set ∂conv(Ω0). The latter implies that ∂conv(Ωa) = {x +
an(x) | x ∈ ∂conv(Ω0)}.

Proof. From Lemma F.10, Aa is a parallel/offset surface of
A0.

To show that Ba is a parallel/offset surface of B0, note
that by Lemma F.11 for any x ∈ B0 we have that x is a
convex combination of points x1, ..., xn ∈ A0 that lie on
the same hyperplane and have the same normal direction,
and similarly for any p ∈ Ba we have that p is a convex
combination of points p1, ..., pn ∈ Aa that lie on the same
hyperplane and have the same normal direction. Thus as we
have shown that Aa is a parallel/offset surface of A0, offset-
ting x1, ..., xn gives p1, ..., pn that must lie on a hyperplane
that is parallel to the hyperplane x1, ..., xn lie on, and they
all have the same normal. Thus

x ∈ B0 ⇐⇒ x = c1x1 + ...+ cnxn

(where x1, .., xn obey Lemma F.11)

⇐⇒ x+ an(x) = c1(x1 + an(x1)) + ..

+ cn(xn + an(xn)) (as c1 + ...+ cn = 1)
⇐⇒ x+ an(x) = c1p1 + ...+ cnpn

(p1, ..., pn ∈ A0+a = Aa)

⇐⇒ x+ an(x) ∈ Ba.
(as p1, .., pn obey Lemma F.11)

Finally, since Ωa is the disjoint union of Aa and Ba for
any a ≥ 0, clearly ∂conv(Ωa) is a parallel/offset surface of
the convex hull of the 0-level set ∂conv(Ω0).

F.5. Proof of the Four Propositions.

F.5.1 Proof of Statement 1’s Proposition

Lemma F.13. Let x ∈ Ω0. If q = x + an(x) is a SION
point for Ωa relative to a surrounding sphere, then the first
point of intersection, p = x + kn(x) ∈ Ωa where k >
a, must have that p = x′ + an(x′) for a point x′ ∈ Ω0

where (1) x′ is in the open exterior half space at x, and (2)
s(n(x), n(x′)) ≤ 0.

Proof. As p ∈ Ωa, p = x′+an(x′) for some point x′ ∈ Ω0

by Lemma F.7.
To see (1), note that p = x′+an(x′) = x+kn(x) where

k > a (see Fig. 13 top left), so the closed ball of radius a
at p (which contains x′) must be contained within the open
exterior tangent half space at x (see Fig. 13 top right).

To see that s(n(x), n(x′)) ≤ 0, note that as x′ +
an(x′) = x+ kn(x) where k > a, then for any 0 < t < k
x + (k − t)n(x) must be outside Ω0. This means that for
some small t > 0, x+ (k − t)n(x) must be in the open ex-
terior tangent half space at x′ + an(x′) (see Fig. 13 bottom
left), so s(n(x), n(x′)) ≤ 0 (as s(n(x), n(x′)) > 0 would
imply that the ray x+λn(x) hits x′ from the interior, rather
than the exterior).

We now give the proof for Proposition F.3 which we re-
state here
Proposition F.3. For any sphere R surrounding Ωa,
SION(Ωa; R) is zero for all a > α, where α depends only
on Ω0. Furthermore, α ≤ d∂V .

Proof. Let x ∈ Ω0. If x+an(x) is a SION for some a ≥ 0,
then p = x′ + an(x′) = x + kn(x) where k > a for some
x′ ∈ Ω0, and by the previous lemma x′ is in the open exte-
rior tangent half space at x and s(n(x), n(x′)) ≤ 0. Thus
x, x′, p form a triangle where d(x, p) = k, d(x′, p) = a and
the vertex at p has an angle ≥ 90◦ (see Fig. 13 bottom right).
This means that x, x′ is the largest side so a = d(x′, p) <
d(x, x′) ≤ d∂V and k = d(x, p) < d(x, x′) ≤ d∂V . Fur-
thermore, note that x+ kn(x) /∈ Ωk as its distance to Ω0 is
less than or equal to a.

Thus when a ≥ d∂V , it follows that SION(Ωa; R) = 0
where R is any sphere surrounding Ωa.

F.5.2 Proof of Statement 2’s Proposition

We now give the proof for Proposition F.4 which we restate
here
Proposition F.4. As a increases, Ωa limits towards the ex-
terior a-level set of A0 = Ω0∩∂conv(Ω0). In particular for
any a, exterior a-level set Ωa does not depends on points in
Ω0 that are further than d∂V

2a to ∂conv(Ω0).

Proof. Let x ∈ Ω0. If x ∈ A0 then p = x + an(x) ∈
Ωa for any a. If x ∈ C0, then we can determine an upper
bound on a for when p is no longer within Ωa. Let z ∈ Ω0

be the point on the shape’s surface furthest away from the
tangent hyperplane at x in the normal direction of x, z =
arg maxy∈Ω0

⟨n(x), y−x⟩, and set ∆x = ⟨n(x), z−x⟩ (see
Fig. 14 left). Note that ⟨n(x), z−x⟩ > 0 and ∆x > 0 since
x ∈ C0 implies that x does not have a tangent supporting
hyperplane, and z ∈ A0 as otherwise there is a point further

Figure 13. The cases for Statement 1.

Figure 14. The cases for Statements 2 (left) and 3 (right). Note for ease of illustration, the case for Statement 3 (right) has been drawn with
a ≤ d∂V .

in the normal direction. Then p is closer to z than x when

d(p, x) = a (32)
> d(p, z) (33)

=
√
d(p, y)2 + d(y, z)2 (34)

=

√
(a−∆x)2 +

√
d(x, z)2 − d(x, y)2

2
(35)

=
√
(a−∆x)2 + d(x, z)2 −∆2

x (36)

=
√
d(x, z)2 + a2 − 2a∆x (37)

which is equivalent to a > d(x,z)2

2∆x
. Now d(x, z) is bounded

above by d∂V , and d(x, conv(Ω0)) ≤ ∆x since z ∈ A0

and y lies on its supporting hyperplane so the line segment
between x and y has to cross conv(Ω0). Thus rearranging
we get that d(x, conv(Ω0)) <

d∂V
2a .

F.5.3 Proof of Statement 3’s Proposition

We now give the proof for Proposition F.5 which we restate
here
Proposition F.5. As a → ∞, the Hausdorff distance be-
tween Ωa and the boundary of its convex hull ∂conv(Ωa)
limits to 0. In particular, for any a > d∂V the Hausdorff
distance is bounded by a−

√
a2 − d2∂V .

Proof. Let us restrict a > d∂V . We will bound where ex-
actly Ωa can be. Let q ∈ Ωa. Note that q ∈ conv(Ωa).
However as we have specified a > d∂V , if q ∈ Ωa then
q ̸∈ conv(Ω0). Thus q ∈ ∂conv(Ωa) \ ∂conv(Ω0). By
Lemma F.12, as ∂conv(Ω0) and ∂conv(Ωa) are parallel/off-
set surfaces, this means that q = x+kn(x) for some x ∈ Ω0

and some k > 0. However if x ∈ A0, then it must be
that k = a (as otherwise x + an(x) ̸∈ Ωa). If x ∈ B0,
then q ∈ C0 (as otherwise by the Lemma x ∈ A0) and
k < a (as x ∈ B0 implies x + an(x) ̸∈ ∂conv(Ωa)). Let
p = x + an(x), note by the Lemma p ∈ ∂conv(Ωa). We
want want to determine where on the line segment between
x and p the point q can and cannot be (see Fig. 14 (right)).
Let x′ be the closest point to x within A0, and consider a
sphere of radius a centered at x′. Note that x is inside this
sphere as a > d∂V , so the surface of the sphere intersects
with the line segment between x and p at some point y. By
the definition of Ca, q cannot be within the sphere as then its
distance to x′ would be less than a. Thus we have bounded
q to be within the line segment between y and p. The length
of this line segment is

d(p, y) = d(p, x)− d(y, x) (38)

= a−
√

d(y, x′)2 − d(x′, x)2 (39)

= a−
√

a2 − d(x′, x)2 (40)

≤ a−
√
a2 − d2∂V . (41)

Thus we have determined that any q ∈ Ωa is either in
Aa ⊂ ∂conv(Ωa) or is within a −

√
a2 − d2∂V of Ba ⊂

∂conv(Ωa) (when q ∈ Ca). Note that this is also a bound
on the distance to Ca for every p ∈ Ba as well by the same
construction, thus it is a bound on the Hausdorff distance.
Since a −

√
a2 − d2∂V → 0 as a → ∞, it follows that the

Hausdorff distance between Ωa and ∂conv(Ωa) limits to 0
as a → ∞.

F.5.4 Proof of Statement 4’s Proposition

We now give the proof for Proposition F.6 which we restate
here
Proposition F.6. As a increases the principal curvatures of
Ωa either stay zero or limit to − 1

a , which is the curvature of
a sphere of radius a (equivalently the radii of the principal
curvatures either stay ∞ or limits to a). Furthermore as
a → ∞, exterior a-level set Ωa limits to a sphere.

Proof. Let p ∈ Ωa. Then p = x+ an(x) for some x ∈ Ω0

by Lemma F.7. Let the principal curvatures at p and x be
κi(p) and κi(x). From Section F.3 the principal curvatures
at p are given by κi(p) =

κi(x)
1−aκi(x)

. Thus if κi(x) = 0 then
κi(p) = 0, and if κi(x) ̸= 0 then κi(p) = 1

1
κi(x)

−a
which

limits to − 1
a as a → ∞.

To see that Ωa limits to a sphere, note that as a → ∞ the
distance from any p ∈ Ωa to any x ∈ Ω0 approaches a.

F.6. Summary

To somewhat summarise out findings, for each x ∈ Ω0 let
us define E(x) as the set of points x′ ∈ Ω0 that are in the
open exterior half space to x. Then
• If E(x) is empty:

– x has a tangent supporting hyperplane to Ω0, and thus
x ∈ A0. Furthermore for any a ≥ 0, x + an(x) ∈
Aa ⊂ Ωa.

– For any a ≥ 0, clearly x + an(x) is not a SION point
for Ωa.

Points a and b in Fig. 12 are examples of this case.
• If E(x) ̸= ∅ and ∃x′ ∈ E(x) such that s(n(x), n(x′)) ≤
0:
– x does not have a tangent supporting hyperplane so x ∈

C0.
– There exists some a ≥ 0 such that x+an(x) ∈ Ωa and

is a SION point for Ωa.
– There exists α > 0 such that for all a ≥ α x+an(x) ̸∈
Ωa.

Points d and e in Fig. 12 are examples of this case (note e
is a SION for a = 0 but d is not).

• If E(x) ̸= ∅ and x′ ∈ E(x) =⇒ s(n(x), n(x′)) > 0:
– x does not have a tangent supporting hyperplane to Ω0

so x ∈ C0.

– For any a ≥ 0, x + an(x) will never be a SION point
for Ωa.

– There exists some α > 0 such that for all a > α we
have that x+ an(x) ̸∈ Ωa, and α is bounded above by

d∂V
2d(x,∂conv(Ω0)

.
Point c in Fig. 12 is an example of this case.

G. More visualizations
We show visualizations in Fig. 15 and Fig. 16 using the
colourmap settings from OG-INR [25]. Note this visual-
ization works in the favour of our method, our method is
highly unlikely to produce outside ghost geometry and thus
have outside red surfaces in the coloured mesh. On the other
hand, our main failure cases are missing surfaces, which
this visualization does not show, or extra inside surfaces,
which would be occluded. These both can happen when the
estimated sampling radius is not conservative enough and
guiding points enter the inside of the shape. The former can
also happen when the shape has very thin surfaces that are
hard for all methods to model, for example the railing of the
ship at the bottom of Fig. 16.

PG-SDF OG-SIREN SAP DiGS

Figure 15. Qualitative comparison on one shape from each class in ShapeNet. We display the reconstructed mesh, and the mesh coloured
by the distance of each vertex to the input point cloud (red is higher distance).

PG-SDF OG-SIREN SAP DiGS

Figure 16. Qualitative comparison on one shape from each class in ShapeNet. We display the reconstructed mesh, and the mesh coloured
by the distance of each vertex to the input point cloud (red is higher distance).

	. Introduction
	. Related Work
	. Preliminaries
	. Notation and Definitions
	. Problem Formulation
	. Neural SDF Formulation
	. Shape Reachability

	. Point-Guided SDF
	. Moving the Guiding Points
	. Optimizing the Network
	. Interpretation as a Homotopy Method

	. Results
	. Surface Reconstruction on ShapeNet
	. Challenging High-SION Shapes
	. Ablation Study and Runtime

	. Discussion and Conclusion
	. Further Algorithm Details
	. Initialization
	. Optimization and Resampling
	. Algorithm with ground truth normals

	. Implementation Details
	. Domain and Preprocessing
	. Moving the Guiding Points
	. Network implementation and Optimization
	. Projection and Resampling

	. Convergence and hyperparameter sensitivity
	. Runtime comparison and ablation
	. Experimental Details
	. Other Methods
	. Metrics

	. Level Set Complexity
	. Four Propositions
	. SDF and Level Set Properties
	. Parallel/Offset Surface Properties
	. Important Definitions and Results
	. Proof of the Four Propositions.
	Proof of Statement 1's Proposition
	Proof of Statement 2's Proposition
	Proof of Statement 3's Proposition
	Proof of Statement 4's Proposition

	. Summary

	. More visualizations

