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A. Architecture and Experiment settings

Architecture For the consistency model architecture, we
employ a structure similar to that of DDPM [19], with the
exception of altering the corresponding embeddings to con-
tinuous time. We utilize the Python library diffusers [49].
In terms of the discriminator, we employ the downsam-
pling structure in the DDPM, preserving it up to the mid-
block. Subsequently, a linear layer is added to map it to
R. Additionally, the layers-per-block parameter is set to
150% of that in the consistency model, with all other pa-
rameters remaining the same. The parameters passed to the
UNet2DModel are listed in Tab. A1. B=128. In the con-
text of block type, ‘D’ represents DownBlock2D, ‘A’ stands
for either AttnDownBlock2D or AttnUpBlock2D, and ‘U’
means UpBlock2D.

CIFAR10 ImageNet 64×64 LSUN Cat 256×256
layers per block 2 2 2
block out channels (1B,1B,2B,2B) (1B,2B,2B,4B,4B) (1B,1B,2B,2B,4B,4B)
down block types DADD DDADD DDDDAD
up block types UUAU UUAUU UAUUUU
attention head dim 8 16 16

Table A1. The parameters passed to the UNet2DModel. For those
not listed, the default settings from the diffusers library are used.

Experiment settings In this section, we report the config-
uration of various hyperparameters within our experimental
framework. Tab. A2 provides a summary of the experimen-
tal setup. Unless otherwise specified, the learning rate for
both the consistency model and the discriminator is iden-
tical. The experiments conducted during the ablation study
(Sec. 4.3), maintain consistency with the settings outlined in
this table, with the exception of the parameters specifically
varied for the ablation study. Additionally, when employing
the ProjectedGAN as the discriminator, the learning rate of
discriminator is set to 0.002, with w and wmid values at 0.1.
Metrics The metrics used are IS, FID, Improved Preci-
sion and Improved Recall. The Inception Score (IS), intro-
duced in [40], assesses a model’s ability to generate con-
vincing images of distinct ImageNet classes and capture the
overall class distribution. However, it has a limitation in
that it doesn’t incentivize capturing the full distribution or
the diversity within classes, leading to models with high IS
even if they only memorize a small portion of the dataset,
as noted in [2]. To address the need for a metric that bet-
ter reflects diversity, the Fréchet Inception Distance (FID)
was introduced in [18]. This metric is argued to align
more closely with human judgment than IS, and it quan-

Hyperparameter CIFAR10 ImageNet LSUN Cat
64×64 256×256

Discriminator DDPM DDPM DDPM
Learning rate 1e-4 5e-5 1e-5
Batch size 80 320 320
µ0 0.9 0.95 0.95
s0 2 2 2
s1 150 200 150
wmid 0.3 0.2 0.1
w 0.3 0.6 0.6
Igp 16 16 16
wgp 10 10 10
τ 0.55 - -
µp 0.93 - -
pr 0.05 - -
Training iterations 300k 400k 165k
Mixed-Precision No Yes Yes
Number of GPUs 1×RTX 3090 4×A100 8×A100

Table A2. Summary of the experimental setup.

tifies the similarity between two image distributions in the
latent space of Inception-V3 as detailed in [5]. Additionally,
[27] developed Improved Precision and Recall metrics that
evaluate the fidelity of generated samples by determining
the proportion that aligns with the data manifold (precision)
and the diversity by the proportion of real samples that are
represented in the generated sample manifold (recall).

B. Details of the Proof for Theorem 3.1

Details for Eq. (6):
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Here, (i) holds because f satisfies the Lipschitz condition.



Details for Eq. (7):
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C. Conditional Discriminator
Theorem C.1. Given a generator G(z,xt, t) and a dis-
criminator D(x0,xt, t). The distribution of optimal solu-
tion of G(·,xt, t) for the problem Eq. (11) is pg(·|xt) =
p(·|xt), where pg(·|xt) is the sample distribution of
G(z,xt, t), z ∼ pz(z|xt). pz(·|xt) is a normal distribu-
tion. xt ∼ pt, and x0 ∼ p0. pt is the marginal distribution
of a diffusion process.
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In the aforementioned equation, JSD represents the Jensen-
Shannon divergence. The equation holds true only when
pg(·|xt) = p(·|xt). This concludes the proof.

D. ACT-Aug
In this section, we will provide the details of ACT-Aug. The
differences from ACT are highlighted in red. The algorithm
is listed in Algorithm 2.

E. More Experiment Results
Zero-shot Image Inpainting An important capability of
consistency models is zero-shot image inpainting. This de-
pends on the properties of the diffusion process and LCT .
Given that we introduce a discriminator during the training
process, does this impact the properties of consistency mod-
els? We demonstrate the results of inpainting in Fig. E3.
We employ the algorithm consistent with [45]. It can be
seen that ACT still retains the capabilities of consistency
models.

We further display the sampling results from the condi-
tional trajectory {x0 + tkz},x0 ∼ p0, z ∼ N (0, I) on
ImageNet 64×64. k ranges from 0 to N , with 10 equidis-
tant points. It can be observed that the sampling results of
tk and tk−1 exhibit significant similarity, which further sub-
stantiates that ACT does not disrupt the properties of LCT

and consistency models.

Generation Visualization on Conditional Trajectory In
this section, we demonstrate samples generated from the
conditional trajectory {x0+ tkz} on ImageNet 64×64, fur-
ther illustrating that our method preserves the properties of



Algorithm 2 Adversarial Consistency Training with Aug-
mentation

1: Input: dataset D, initial consistency model parame-
ter θg , discriminator θd, step schedule N(·), EMA de-
cay rate schedule µ(·), optimizer opt(·, ·), discrimina-
tor with augmentation Daug(·, ·, ·, θd), adversarial rate
schedule λ(·), gradient penalty weight wgp, gradient
penalty interval Igp, gradient penalty threshold τ , aug-
mentation probability update rate pr

2: θ−
g ← θ, k ← 0, paug ← 0 and L−

gp = τ
3: repeat
4: Sample x ∼ D, and n ∼ U [[1, N(k)]]
5: Sample z ∼ N (0, I) ▷ Train Consistency Model
6: LCT ←

d(f(x+ tn+1z, tn+1,θg),f(x+ tnz, tn,θ
−
g ))

7: LG ← log(1−
Daug(f(x+ tn+1z, tn+1, paug,θg), tn+1,θd))

8: Lf ← (1− λN(k)(n+1))LCT + λN(k)(n+1)LG

9: θg ← opt(θg,∇θg
(Lf ))

10: θ−
g ← stopgrad(µ(k)θ−

g + (1− µ(k))θg)

11: Sample xg ∼ D, xr ∼ D, and n ∼ U [[1, N(k)]]
12: Sample z ∼ N (0, I) ▷ Train Discriminator
13: LD ← − log(Daug(xr, tn+1, paug,θd))

− log(1−Daug(f(xg+tn+1z, tn+1, paug,θd))
14: Lgp ← wgp[k mod Igp = 0]∗

∥∇xr
Daug(xr, tn+1, paug,θd)∥2

15: Ld ← λN(k)(n+ 1)LD + λN(k)(n+ 1)Lgp

16: θd ← opt(θd,∇θd
(Ld))

17: if k mod Igp = 0 then
18: paug ←

Clip[0,1](paug + 2([L−
gp >= τ ]− 0.5)pr)

19: L−
gp = µpL−

gp + (1− µp)Lgp

20: end if
21: k ← k + 1
22: until convergence
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Figure E1. Lgp, LCT , and FID of ACT on ImageNet 64x64
(wmid=0.2, w = 0.6, a suitable parameter set. Under these pa-
rameters, all three metrics demonstrate stability).

consistency training. Fig. E4 shows the conditional trajec-
tory {x0 + tkz}, while Fig. E5 displays the samples gener-
ated from the conditional trajectory {x0 + tkz}. It can be
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Figure E2. Lgp, LCT , and FID of ACT-Aug on CIFAR10 (λN ≡
0.3, a suitable parameter set. Under these parameters, all three
metrics demonstrate stability).

Figure E3. The results of zero-shot inpainting. First Row: orig-
inal images; Second Row: masked images; Bottom Row: in-
painted images.

Figure E4. The conditional trajectory {x0 + tkz} (ImageNet
64×64).

observed that there is a high degree of similarity between
adjacent t values, further validating that our method retains
the properties of LCT .

Examples of proper λN In this section, we present the
stability of LCT , Lgp, and the FID score of the appropriate
selection of λN . As depicted in Fig. E1, it is observed that
all three metrics exhibit stability during training. Specifi-
cally forLgp, there is an initial decreasing trend followed by
an increase; however, the variation remains within a range
of 0.1 until the end of training.

Fig. E2 illustrates the stability of Lgp, LCT , and the FID
score for ACT-Aug under the appropriate selection of λN .
It is observed that all three metrics exhibit stability. Further-
more, when compared with ACT on CIFAR10 as shown in



Figure E5. Generated from the conditional trajectory {x0 + tkz}
(ImageNet 64×64).

(a) Generated from the conditional
trajectory {x0 + tkz}.

(b) Sampling from Tz.

Figure E6. Failed generations. Mode collapse when λN ≈ 1.
Experiments are conducted on the CIFAR10 dataset.

Fig. 3, Lgp is stabilized around the set τ = 0.55, and both
LCT and the FID score continue to show a decreasing trend.
This validates the effectiveness of the augmentation.

More samples. Fig. E6 shows failed generations on CI-
FAR10 dataset. Figs. E7 and E8 shows more samples on
LSUN Cat 256×256 dataset.



Figure E7. Generated samples (ACT Trained on LSUN Cat 256×256).



Figure E8. Generated samples (ACT Trained on LSUN Cat 256×256).
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