
EscherNet: A Generative Model for Scalable View Synthesis

(Appendix)

Acknowledgement

This research is funded by EPSRC Prosperity Partnerships (EP/S036636/1) and Dyson Technology Ltd. Xin Kong holds a

China Scholarship Council-Imperial Scholarship. We would like to thank Sayak Paul and HuggingFace for contributing the

training compute that facilitated early project exploration. We would also like to acknowledge Yifei Ren for his valuable

discussions on formulating the 6DoF CaPE.

A. Python Implementation of CaPE

def compute_4dof_cape(v, P, s):

"""

:param v: input feature vector with its dimension must be divisible by 8

:param P: list = [alpha, beta, gamma, r]

:param s: a small scalar for radius

:return: rotated v with its corresponding camera pose P

"""

v = v.reshape([-1, 8])

psi = np.zeros([8, 8])

for i in range(4):

if i < 3:

psi[2 * i:2 * (i + 1), 2 * i:2 * (i + 1)] = \

np.array([[np.cos(P[i]), -np.sin(P[i])], [np.sin(P[i]), np.cos(P[i])]])

else:

psi[2 * i:2 * (i + 1), 2 * i:2 * (i + 1)] = \

np.array([[np.cos(s * np.log(P[i])), -np.sin(s * np.log(P[i]))],

[np.sin(s * np.log(P[i])), np.cos(s * np.log(P[i]))]])

return v.dot(psi).reshape(-1)

Listing 1. Python implementation for 4 DoF CaPE.

def compute_6dof_cape(v, P, s=0.001, key=True):

"""

:param v: input feature vector with its dimension must be divisible by 4

:param P: 4 x 4 SE3 matrix

:param s: a small scalar for translation

:return: rotated v with its corresponding camera pose P

"""

v = v.reshape([-1, 4])

P[:3, 3] *= s

psi = P if key else np.linalg.inv(P).T

return v.dot(psi).reshape(-1)

Listing 2. Python implementation for 6 DoF CaPE.

B. Additional Training Details and Experimental Settings

Optimisation and Implementation EscherNet is trained using the AdamW optimiser [24] with a learning rate of 1 · 10−4

and weight decay of 0.01 for [256 × 256] resolution images. We incorporate cosine annealing, reducing the learning rate to

1 · 10−5 over a total of 100,000 training steps, while linearly warming up for the initial 1000 steps. To speed up training, we

implement automatic mixed precision with a precision of bf16 and employ gradient checkpointing. Our training batches

consist of 3 reference views and 3 target views randomly sampled with replacement from 12 views for each object, with a

total batch size of 672 (112 batches per GPU). The entire model training process takes 1 week on 6 NVIDIA A100 GPUs.

Metrics For 2D metrics used in view synthesis, we employ PSNR, SSIM [53], LPIPS [61]. For 3D metrics used in 3D

generation, we employ Chamfer Distance and Volume IoU. To ensure a fair and efficient evaluation process, each baseline

method and our approach are executed only once per scene per viewpoint. This practice has proven to provide stable averaged

results across multiple scenes and viewpoints.

B.1. Evaluation Details

In NeRF Synthetic Dataset [29], we consider and evaluate all 8 scenes provided in the original dataset. To assess per-

formance with varying numbers of reference views, we train all baseline methods and our approach using the same set of

views randomly sampled from the training set. The evaluation is conducted on all target views defined in the test sets across

all 8 scenes (with 200 views per scene). For InstantNGP [31], we run 10k steps (≈ 1min) for each scene. For 3D Gaussian

Splatting [18], we run 5k steps (≈ 2min) for each scene.

In Google Scanned Dataset (GSO) [10], we evaluate the same 30 objects chosen by SyncDreamer [22]. For each object,

we render 25 views with randomly generated camera poses and a randomly generated environment lighting condition to

construct our test set. For each object, we choose the first 10 images as our reference views and the subsequent 15 images

as our target views for evaluation. It’s crucial to note that all reference and target views are rendered with random camera

poses, establishing a more realistic and challenging evaluation setting compared to the evaluation setups employed in other

baselines: e.g. SyncDreamer uses an evenly distributed environment lighting to render all GSO data, and the reference view

for each object is manually selected based on human preference.1 Additionally, the evaluated target view is also manually

selected based on human preference chosen among four independent generations.2

In evaluating 3D generation, we randomly sample 4096 points evenly distributed from the generated 3D mesh or point

cloud across all methods. Each method’s generated mesh is aligned to the ground-truth mesh using the camera pose of the

reference views. Specifically in Point-E [32] and Shape-E [17], we rotate 90/180 degrees along each x/y/z axis to determine

the optimal alignment for the final mesh pose. Our evaluation approach again differs from SyncDreamer, which initially

projects the 3D mesh into their fixed 16 generated views to obtain depth maps. Then, points are sampled from these depth

maps for the final evaluation.3

In RTMV Dataset [50], we follow the evaluation setting used in Zero-1-to-3 [21], which consists of 10 complex scenes

featuring a pile of multiple objects from the GSO dataset. Similar to the construction of our GSO test set, we then randomly

select a fixed subset of the first 10 images as our reference views and the subsequent 10 views as our target views for

evaluation.

1https://github.com/liuyuan-pal/SyncDreamer/issues/21
2https://github.com/liuyuan-pal/SyncDreamer/issues/21#issuecomment-1770345260
3https://github.com/liuyuan-pal/SyncDreamer/issues/44

https://github.com/liuyuan-pal/SyncDreamer/issues/21
https://github.com/liuyuan-pal/SyncDreamer/issues/21#issuecomment-1770345260
https://github.com/liuyuan-pal/SyncDreamer/issues/44

C. Additional Results on 6 DoF CaPE

To validate the effectiveness of the 6 DoF CaPE design, we demonstrate its performance in novel view synthesis on GSO and

RTMV datasets in Tab. 4a and on the NeRF Synthetic dataset in Tab. 4c. We also provide 3D reconstruction results on GSO

dataset in Tab. 4b. It is evident that EscherNet with 6 DoF CaPE achieves comparable, and often, slightly improved results

when compared to our 4 DoF CaPE design.

Training

Data

Ref.

Views

GSO-30 RTMV

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RealFusion - 1 12.76 0.758 0.382 - - -

Zero123 800K 1 18.51 0.856 0.127 10.16 0.505 0.418

Zero123-XL 10M 1 18.93 0.856 0.124 10.59 0.520 0.401

EscherNet - 4 DoF 800k 1 20.24 0.884 0.095 10.56 0.518 0.410

EscherNet - 4 DoF 800k 2 22.91 0.908 0.064 12.66 0.585 0.301

EscherNet - 4 DoF 800k 3 24.09 0.918 0.052 13.59 0.611 0.258

EscherNet - 4 DoF 800k 5 25.09 0.927 0.043 14.52 0.633 0.222

EscherNet - 4 DoF 800k 10 25.90 0.935 0.036 15.55 0.657 0.185

EscherNet - 6 DoF 800k 1 20.89 0.886 0.093 12.30 0.569 0.332

EscherNet - 6 DoF 800k 2 23.92 0.917 0.057 14.18 0.618 0.252

EscherNet - 6 DoF 800k 3 25.21 0.927 0.045 15.06 0.643 0.217

EscherNet - 6 DoF 800k 5 26.59 0.937 0.036 15.71 0.663 0.190

EscherNet - 6 DoF 800k 10 27.75 0.947 0.030 16.58 0.688 0.160

(a) Novel view synthesis performance on GSO and RTMV datasets.

Ref. Views Chamfer Dist. ↓ Volume IoU ↑

Point-E 1 0.0447 0.2503

Shape-E 1 0.0448 0.3762

One2345 1 0.0632 0.4209

One2345-XL 1 0.0667 0.4016

DreamGaussian 1 0.0605 0.3757

DreamGaussian-XL 1 0.0459 0.4531

SyncDreamer 1 0.0400 0.5220

NeuS 3 0.0366 0.5352

NeuS 5 0.0245 0.6742

NeuS 10 0.0195 0.7264

EscherNet - 4 DoF 1 0.0314 0.5974

EscherNet - 4 DoF 2 0.0215 0.6868

EscherNet - 4 DoF 3 0.0190 0.7189

EscherNet - 4 DoF 5 0.0175 0.7423

EscherNet - 4 DoF 10 0.0167 0.7478

EscherNet - 6 DoF 1 0.0274 0.6382

EscherNet - 6 DoF 2 0.0196 0.7100

EscherNet - 6 DoF 3 0.0180 0.7348

EscherNet - 6 DoF 5 0.0176 0.7392

EscherNet - 6 DoF 10 0.0160 0.7628

(b) 3D reconstruction performance on GSO.

Reference Views (Less → More)

1 2 3 5 10 20 50 100

InstantNGP (Scene Specific Training)

PSNR↑ 10.92 12.42 14.27 18.17 22.96 24.99 26.86 27.30

SSIM↑ 0.449 0.521 0.618 0.761 0.881 0.917 0.946 0.953

LPIPS↓ 0.627 0.499 0.391 0.228 0.091 0.058 0.034 0.031

GaussianSplatting (Scene Specific Training)

PSNR↑ 9.44 10.78 12.87 17.09 23.04 25.34 26.98 27.11

SSIM↑ 0.391 0.432 0.546 0.732 0.876 0.919 0.942 0.944

LPIPS↓ 0.610 0.541 0.441 0.243 0.085 0.054 0.041 0.041

EscherNet - 4 DoF (Zero Shot Inference)

PSNR↑ 13.36 14.95 16.19 17.16 17.74 17.91 18.05 18.15

SSIM↑ 0.659 0.700 0.729 0.748 0.761 0.765 0.769 0.771

LPIPS↓ 0.291 0.208 0.161 0.127 0.114 0.106 0.099 0.097

EscherNet - 6 DoF (Zero Shot Inference)

PSNR↑ 13.73 15.66 16.91 17.72 18.47 18.77 19.24 19.28

SSIM↑ 0.664 0.712 0.745 0.762 0.779 0.786 0.795 0.796

LPIPS↓ 0.294 0.197 0.149 0.120 0.103 0.095 0.085 0.084

(c) Novel view synthesis performance on NeRF Synthetic dataset.

Table 4. EscherNet 6 DoF presents a similar and sometimes improved performance than EscherNet 4 DoF.

D. Additional Results on NeRF Synthetic Dataset

We present additional visualisation on the NeRF Synthetic Dataset using EscherNet trained with 4 DoF CaPE.

Reference Views (Less → More)

1 2 3 5 10 20 50 100

InstantNGP (Scene Specific Training)

PSNR 9.45 PSNR 11.41 PSNR 13.64 PSNR 19.30 PSNR 23.14 PSNR 26.18 PSNR 28.54 PSNR 28.87

PSNR 10.37 PSNR 11.72 PSNR 12.82 PSNR 15.58 PSNR 19.71 PSNR 21.28 PSNR 23.09 PSNR 23.78

3D Gaussian Splatting (Scene Specific Training)

PSNR 8.07 PSNR 9.16 PSNR 11.72 PSNR 17.32 PSNR 24.19 PSNR 25.34 PSNR 26.98 PSNR 29.01

PSNR 9.14 PSNR 10.63 PSNR 11.43 PSNR 14.81 PSNR 20.15 PSNR 22.88 PSNR 23.49 PSNR 23.51

EscherNet (Zero Shot Inference)

PSNR 10.86 PSNR 10.80 PSNR 15.51 PSNR 17.07 PSNR 17.40 PSNR 17.38 PSNR 17.77 PSNR 17.85

PSNR 10.10 PSNR 13.25 PSNR 13.43 PSNR 14.33 PSNR 14.97 PSNR 15.65 PSNR 15.70 PSNR 15.90

Table 5. Novel View Synthesis on NeRF Synthetic Dataset. We report the average PSNR per scene, conditioned on the respective number

of reference views.

E. Additional Results on Text-to-3D

We present additional visualisation on text-to-image-to-3D using EscherNet trained with 4 DoF CaPE.

A robot made of vegetables.

A nurse corgi.

A cute steampunk elephant.

A bull dog wearing a black pirate hat.

An astronaut riding a horse.

Medieval House, grass, medieval,

medieval-decor, 3d asset.

Table 6. Text-to-3D generation with SDXL (top 3) and MVDream (bottom 3).

F. Additional Discussions, Limitations and Future Work

Direct v.s. Autoregressive Generation EscherNet’s flexibility in handling arbitrary numbers of reference and target views

offers multiple choices for view synthesis. In our experiments, we employ the straightforward direct generation to jointly

generate all target views. Additionally, an alternative approach is autoregressive generation, where target views are generated

sequentially, similar to text generation with autoregressive language models.

For generating a large number of target views, autoregressive generation can be significantly faster than direct generation

(e.g. more than 20× faster for generating 200 views). This efficiency gain arises from converting a quadratic inference cost

into a linear inference cost in each self-attention block. However, it’s important to note that autoregressive generation may

encounter a content drifting problem in our current design, where the generated quality gradually decreases as each newly

generated view depends on previously non-perfect generated views. Autoregressive generation boasts many advantages in

terms of inference efficiency and is well-suited for specific scenarios like SLAM (Simultaneous Localization and Mapping).

As such, enhancing rendering quality in such a setting represents an essential avenue for future research.

Stochasticity and Consistency in Multi-View Generation We also observe that to enhance the target view synthesis

quality, especially when conditioning on a limited number of reference views, introducing additional target views can be

highly beneficial. These supplementary target views can either be randomly defined or duplicates with the identical target

camera poses. Simultaneously generating multiple target views serves to implicitly reduce the inherent stochasticity in the

diffusion process, resulting in improved generation quality and consistency. Through empirical investigations, we determine

that the optimal configuration ensures a minimum of 15 target views, as highlighted in orange in Fig. 8. Beyond this threshold,

any additional views yield marginal performance improvements.

1 3 5 10 15 20 25 30

13

15

17

19

21

23

25

17.35

Target Views

PSNR

(a) 1 Reference View

1 3 5 10 15 20 25 30

13

15

17

19

21

23

25
23.04

Target Views

PSNR

(b) 5 Reference Views

1 3 5 10 15 20 25 30

13

15

17

19

21

23

25
23.53

Target Views

PSNR

(c) 10 Reference Views

1 3 5 10 15 20 25 30

13

15

17

19

21

23

25 23.87

Target Views

PSNR

(d) 20 Reference Views

Figure 8. Novel view synthesis with a different number of reference and target views. We present the averaged performance of

EscherNet on one pre-selected target view across objects in the GSO dataset. We observe a clear improvement in view synthesis quality as

the number of both reference and target views increases. In this scenario, the multiple target views are essentially multiple duplicates of

the initially chosen single pre-selected view, a strategy we find effective in enhancing view synthesis quality.

Training Data Sampling Strategy We have explored various combinations of N ∈ {1, 2, 3, 4, 5} reference views and

M ∈ {1, 2, 3, 4, 5} target views during EscherNet training. Empirically, a larger number of views demand more GPU

memory and slow down training speed, while a smaller number of views may restrict the model’s ability to learn multi-view

correspondences. To balance training efficiency and performance, we set our training views to N = 3 reference views and

M = 3 target views for each object, a configuration that has proven effective in practice. Additionally, we adopt a random

sampling approach with replacement for these 6 views, introducing the possibility of repeated images in the training views.

This sampling strategy has demonstrated a slight improvement in performance compared to sampling without replacement.

Scaling with Multi-view Video EscherNet’s flexibility sets it apart from other multi-view diffusion models [22, 23] that

require a set of fixed-view rendered images from 3D datasets for training. EscherNet can efficiently construct training samples

using just a pair of posed images. While it can benefit from large-scale 3D datasets like [6, 7], EscherNet’s adaptability

extends to a broader range of posed image sources, including those directly derived from videos. Scaling EscherNet to

accommodate multiple data sources is an important direction for future research.

	. Python Implementation of CaPE
	. Additional Training Details and Experimental Settings
	. Evaluation Details

	. Additional Results on 6 DoF CaPE
	. Additional Results on NeRF Synthetic Dataset
	. Additional Results on Text-to-3D
	. Additional Discussions, Limitations and Future Work

