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A. Additional Implementation Details
In this section, we provide additional details to assist the

implementation and reproduction of the approaches in the
proposed OpenESS framework.

A.1. Datasets

In this study, we follow prior works [2, 7, 8, 16] by using
the DDD17-Seg [2] and DSEC-Semantic [16] datasets for
evaluating and validating the baselines, prior methods, and
the proposed OpenESS framework. Some specifications re-
lated to these two datasets are listed as follows.
• DDD17-Seg [2] serves as the first benchmark for ESS. It

is a semantic segmentation extension of the DDD17 [3]
dataset, which includes hours of driving data, capturing
a variety of driving conditions such as different times of
day, traffic scenarios, and weather conditions. Alonso and
Murillo [2] provide the semantic labels on top of DDD17
to enable event-based semantic segmentation. Specifi-
cally, they proposed to use the corresponding gray-scale

images along with the event streams to generate an ap-
proximated set of semantic labels for training, which was
proven effective in training models to segment directly
on event-based data. A three-step procedure is applied:
i) train a semantic segmentation model on the gray-scale
images in the Cityscapes dataset [5]; ii) Use the trained
model to label the gray-scale images in DDD17; and iii)
Conduct a post-processing step on the generated pseudo
labels, including class merging and image cropping. The
dataset specification is shown in Tab. A. In total, there
are 15950 training and 3890 test samples in the DDD17-
Seg dataset. Each pixel is labeled across six seman-
tic classes, including flat, background, object,
vegetation, human, and vehicle. For each sam-
ple, we convert the event streams into a sequence of 20
voxel grids, each consisting of 32000 events and with a
spatial resolution of 352 × 200. For additional details of
this dataset, kindly refer to http://sensors.ini.
uzh.ch/news_page/DDD17.html.

• DSEC-Semantic [16] is a semantic segmentation exten-
sion of the DSEC (Driving Stereo Event Camera) dataset
[6]. DSEC is an extensive dataset designed for advanced
driver-assistance systems (ADAS) and autonomous driv-
ing research, with a particular focus on event-based vision
and stereo vision. Different from DDD17 [3], the DSEC
dataset combines data from event-based cameras and tra-
ditional RGB cameras. The inclusion of event-based
cameras (which capture changes in light intensity) along-
side regular cameras provides a rich, complementary data
source for perception tasks. The dataset typically features
high-resolution images and event data, providing detailed
visual information from a wide range of driving condi-
tions, including urban, suburban, and highway environ-
ments, various weather conditions, and different times of
the day. This diversity is crucial for developing systems
that can operate reliably in real-world conditions. Based
on such a rich collection, Sun et al. [16] adopted a similar
pseudo labeling procedure as DDD17-Seg [2] and gener-
ated the semantic labels for eleven sequences in DSEC,
dubbed as DSEC-Semantic. The dataset specification is
shown in Tab. B. In total, there are 8082 training and
2809 test samples in the DSEC-Semantic dataset. Each
pixel is labeled across eleven semantic classes, including
background, building, fence, person, pole,
road, sidewalk, vegetation, car, wall, and
traffic-sign. For each sample, we convert the event
streams into a sequence of 20 voxel grids, each consisting
of 100000 events and with a spatial resolution of 640 ×
440. For additional details of this dataset, kindly refer to
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Table A. The specifications of the DDD17-Seg dataset [2].

- Training Test

Seq dir0 dir3 dir4 dir6 dir7 dir1

# Frames 11785 20051 41071 28411 58650 71680

# Events 5550 1320 6945 1140 995 3890

Resolution 352× 200 352× 200

# Classes 6 Classes 6 Classes

Table B. The specifications of the DSEC-Semantic dataset [16].

- Training Test

Seq 00 a 01 a 02 a 04 a 05 a 06 a 07 a 08 a 13 a 14 c 15 a

# Frames 939 681 235 701 1753 1523 1463 787 379 1191 1239

# Events 933 675 229 695 1747 1517 1457 781 373 1185 1233

Resolution 640× 440 640× 440

# Classes 11 Classes 11 Classes

https://dsec.ifi.uzh.ch/dsec-semantic.

A.2. Text Prompts

To enable the conventional evaluation of our pro-
posed open-vocabulary approach on an event-based seman-
tic segmentation dataset, we need to use the pre-defined
class names as text prompts to generate the text embed-
ding. Specifically, we follow the standard templates [13]
when generating the embedding. The dataset-specific text
prompts defined in our framework are listed as follows.
• DDD17-Seg. There is a total of six semantic classes in

the DDD17-Seg dataset [2], with static and dynamic com-
ponents of driving scenes. Our defined text prompts of
this dataset are summarized in Tab. C. For each semantic
class, we generate for each text prompt the text embed-
ding using the CLIP text encoder and then average the
text embedding of all text prompts as the final embedding
of this class.

• DSEC-Semantic. There is a total of eleven semantic
classes in the DSEC-Semantic dataset [16], ranging from
static and dynamic components of driving scenes. Our
defined text prompts of this dataset are summarized in
Tab. D. For each semantic class, we generate for each text
prompt the text embedding using the CLIP text encoder
and then average the text embedding of all text prompts
as the final embedding of this class.

A.3. Superpixels

In image processing and computer vision, superpixels
can be defined as a scheme that groups pixels in an im-

age into perceptually meaningful atomic regions, which are
used to replace the rigid structure of the pixel grid [1]. Su-
perpixels provide a more natural representation of the im-
age structure, often leading to more efficient and effective
image processing. Here are some of their key aspects:
• Grouping Pixels. Superpixels are often formed by clus-

tering pixels based on certain criteria like color similarity,
brightness, texture, and other low-level patterns [1], or
more recently, semantics [10]. This results in contiguous
regions in the image that are more meaningful than indi-
vidual pixels for many applications [4, 11, 12, 17].

• Reducing Complexity. By aggregating pixels into su-
perpixels, the complexity of image data is significantly
reduced [15]. This reduction helps in speeding up subse-
quent image processing tasks, as algorithms have fewer
elements (superpixels) to process compared to the poten-
tially millions of pixels in an image.

• Preserving Edges. One of the primary goals of super-
pixel segmentation is to preserve important image edges.
Superpixels often adhere closely to the boundaries of ob-
jects in the image, making them useful for tasks that rely
on accurate edge information, like object recognition and
scene understanding.
In this work, we propose to first leverage calibrated

frames to generate coarse, instance-level superpixels and
then distill knowledge from a pre-trained image backbone
to the event segmentation network. Specifically, we resort
to the following two ways to generate the superpixels.

• SLIC. The first way is to leverage the heuristic Sim-
ple Linear Iterative Clustering (SLIC) approach [1] to
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Table C. The text prompts defined on the DDD17-Seg dataset [2] (6 classes) used for generating the CLIP text embedding.

DDD17 (6 classes)

# class text prompt

0 flat ‘road’, ‘driveable’, ‘street’, ‘lane marking’, ‘bicycle lane’, ‘roundabout lane’,
‘parking lane’, ‘terrain’, ‘grass’, ‘soil’, ‘sand’, ‘lawn’, ‘meadow’, ‘turf’

1 background ‘sky’, ‘building’

2 object ‘pole’, ‘traffic sign pole’, ‘traffic light pole’, ‘traffic light box’, ‘traffic-sign’,
‘parking-sign’, ‘direction-sign’

3 vegetation ‘vegetation’, ‘vertical vegetation’, ‘tree’, ‘tree trunk’, ‘hedge’, ‘woods’, ‘terrain’,
‘grass’, ‘soil’, ‘sand’, ‘lawn’, ‘meadow’, ‘turf’

4 human ‘person’, ‘pedestrian’, ‘walking people’, ‘standing people’, ‘sitting people’, ‘tod-
dler’

5 vehicle ‘car’, ‘jeep’, ‘SUV’, ‘van’, ‘caravan’, ‘truck’, ‘box truck’, ‘pickup truck’, ‘trailer’,
‘bus’, ‘public bus’, ‘train’, ‘vehicle-on-rail’, ‘tram’, ‘motorbike’, ‘moped’,
‘scooter’, ‘bicycle’

Table D. The ext prompts defined on the DSEC-Semantic dataset [16] (11 classes) used for generating the CLIP text embedding.

DSEC-Semantic (11 classes)

# class text prompt

0 background ‘sky’

1 building ‘building’, ‘skyscraper’, ‘house’, ‘bus stop building’, ‘garage’, ‘carport’, ‘scaf-
folding’

2 fence ‘fence’, ‘fence with hole’

3 person ‘person’, ‘pedestrian’, ‘walking people’, ‘standing people’, ‘sitting people’, ‘tod-
dler’

4 pole ‘pole’, ‘electric pole’, ‘traffic sign pole’, ‘traffic light pole’

5 road ‘road’, ‘driveable’, ‘street’, ‘lane marking’, ‘bicycle lane’, ‘roundabout lane’,
‘parking lane’

6 sidewalk ‘sidewalk’, ‘delimiting curb’, ‘traffic island’, ‘walkable’, ‘pedestrian zone’

7 vegetation ‘vegetation’, ‘vertical vegetation’, ‘tree’, ‘tree trunk’, ‘hedge’, ‘woods’, ‘terrain’,
‘grass’, ‘soil’, ‘sand’, ‘lawn’, ‘meadow’, ‘turf’

8 car ‘car’, ‘jeep’, ‘SUV’, ‘van’, ‘caravan’, ‘truck’, ‘box truck’, ‘pickup truck’, ‘trailer’,
‘bus’, ‘public bus’, ‘train’, ‘vehicle-on-rail’, ‘tram’, ‘motorbike’, ‘moped’,
‘scooter’, ‘bicycle’

9 wall ‘wall’, ‘standing wall’

10 traffic-sign ‘traffic-sign’, ‘parking-sign’, ‘direction-sign’, ‘traffic-sign without pole’, ‘traffic
light box’

efficiently group pixels from frame Iimg
i into a to-

tal of Mslic segments with good boundary adherence
and regularity. The superpixels are defined as Ispi =

{I1
i , I2

i , ..., I
Mslic
i }, where Mslic is a hyperparameter

that needs to be adjusted based on the inputs. The
generated superpixels satisfy I1

i ∪ I2
i ∪ ... ∪ IMslic

i =

{1, 2, ...,H × W}. Several examples of the SLIC-
generated superpixels are shown in the second row of
Fig. A, where each of the color-coded patches represents
one distinct and semantically coherent superpixel.

• SAM. For the second option, we use the recent Seg-
ment Anything Model (SAM) [10] which takes Iimg

i as
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Figure A. Examples of superpixels generated by SLIC [1] (the 2nd row) and SAM [10] (the 3rd row). The parameter Mslic in the SLIC
algorithm is set to 100. Each colored patch represents one distinct and semantically coherent superpixel. Best viewed in colors.

the input and outputs Msam class-agnostic masks. For
simplicity, we use M to denote the number of super-
pixels used during knowledge distillation, i.e., {Ispi =
{I1

i , ..., Ik
i }|k = 1, ...,M}. Several examples of the

SAM-generated superpixels are shown in the third row of
Fig. A, where each of the color-coded patches represents
one distinct and semantically coherent superpixel.

We calculate the SLIC and SAM superpixel distributions
on the training set of the DSEC-Semantic dataset [16] and
show the corresponding statistics in Fig. B. As can be ob-
served, the SLIC-generated superpixels often contain more
low-level visual cues, such as color similarity, brightness,
and texture. On the contrary, superpixels generated by
SAM exhibit clear semantic coherence and often depict the
boundaries of objects and backgrounds. As verified in the
main body of this paper, the semantically richer SAM su-
perpixels bring higher performance gains in our Frame-to-
Event Contrastive Learning framework.

Meanwhile, we provide more fine-grained examples of
the SLIC algorithm using different Mslic, i.e., 25, 50, 100,
150, and 200. The results are shown in Fig. C. Specifically,
the number of superpixels Mslic should reflect the complex-
ity and detail of the image. For images with high detail
or complexity (like those with many objects or textures), a
larger Mslic can capture more of this detail. Conversely, for
simpler images, fewer superpixels might be sufficient. Usu-
ally, more superpixels mean smaller superpixels. Smaller
superpixels can adhere more closely to object boundaries

and capture finer details, but they might also capture more
noise. Fewer superpixels result in larger, more homoge-
neous regions but may lead to a loss of detail, especially
at the edges of objects. The choice also depends on the
specific application. For instance, in object detection or
segmentation tasks where boundary adherence is crucial,
a higher number of superpixels might be preferable. In
contrast, for tasks like image compression or abstraction,
fewer superpixels might be more appropriate. Often, the
optimal number of superpixels is determined empirically.
This involves experimenting with different values and eval-
uating the results based on the specific criteria of the task
or application. In our event-based semantic segmentation
task, we choose Mslic = 100 for our Frame-to-Event Con-
trastive Learning on the DSEC-Semantic dataset [16], and
Mslic = 25 on the DDD17-Seg dataset [2].

Since Ievti and Iimg
i have been aligned and synchro-

nized, we can group events from Ievti into superevents
{V sp

i = {V1
i , ...,V l

i}|l = 1, ...,M} by using the known
event-pixel correspondences.

A.4. Backbones

As mentioned in the main body of this paper, we estab-
lish three open-vocabulary event-based semantic segmenta-
tion settings based on the use of three different event rep-
resentations, i.e., frame2voxel, frame2recon, and
frame2spike. It is worth noting that these three event
representations tend to have their own advantages.
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(a) Histogram of SLIC-Generated Superpixels (b) Histogram of SAM-Generated Superpixels

Figure B. The statistical distributions of superpixels generated by SLIC [1] (subfigure a) and SAM [10] (subfigure b).

Table E. The per-class segmentation results of annotation-free event-based semantic segmentation approaches on the test set of DSEC-
Semantic [16]. Scores reported are IoUs in percentage (%). For each semantic class, the best score in each column is highlighted in bold.
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Annotation-Free ESS
MaskCLIP [19] 21.97 26.45 52.59 0.20 0.04 4.19 65.76 2.96 48.02 40.67 0.67 0.08 58.96

FC-CLIP [18] 39.42 87.49 69.68 14.39 17.53 0.29 71.76 34.56 71.30 63.19 2.98 0.50 79.20
OpenESS (Ours) 43.31 92.53 74.22 11.96 0.00 0.41 87.32 55.09 74.23 64.25 7.98 8.47 86.18

We supplement additional implementation details re-
garding the used event representations as follows.
• Frame2Voxel. For the use of voxel grids as the event em-

bedding, we follow Sun et al. [16] by converting the raw
events εi into the regular voxel grids Ivoxi ∈ RC×H×W

as the input to the event-based semantic segmentation net-
work. This representation is intuitive and aligns well with
conventional event camera data processing techniques. It
is suitable for convolutional neural networks as it main-
tains spatial and temporal relationships. Specifically, with
a predefined number of events, each voxel grid is built
from non-overlapping windows as follows:

Ivoxi =
∑
ej∈εi

pjδ(xj−x)δ(yj−y)max{1−|t∗j −t|, 0},

(1)
where δ is the Kronecker delta function; t∗j = (B −
1)

tj−t0
∆T is the normalized event timestamp with B as the

number of temporal bins in an event stream; ∆T is the
time window and t0 denotes the time of the first event in
the window. It is worth noting that voxel grids can be
memory-intensive, especially for high-resolution sensors
or long-time windows. They might also introduce quan-

tization errors due to the discretization of space and time.
For additional details on the use of voxel grids, kindly
refer to https://github.com/uzh-rpg/ess.

• Frame2Recon. For the use of event reconstructions as
the event embedding, we follow Sun et al. [16] and Re-
becq et al. [14] by converting the raw events εi into the
regular frame-like event reconstructions Ireci ∈ RH×W

as the input to the event-based semantic segmentation net-
work. This can be done by accumulating events over short
time intervals or by using algorithms to interpolate or sim-
ulate frames. This approach is compatible with standard
image processing techniques and algorithms developed
for frame-based vision. It is more familiar to practitioners
used to working with conventional cameras. In this work,
we adopt the E2VID model [14] to generate the event re-
constructions. This process can be described as follows:

zreck = Ee2vid(I
vox
k , zreck−1), k = 1, ..., N, (2)

Ireci = De2vid(z
rec), (3)

where Ivoxk denotes the voxel grids as defined in Eq. (1);
Ee2vid and De2vid are the encoder of decoder of the E2VID
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Figure C. Examples of superpixels generated by SLIC [1] with different numbers of superpixels Mslic (25, 50, 100, 150, and 200). Each
colored patch represents one distinct and semantically coherent superpixel. Best viewed in colors.

model [14], respectively. It is worth noting that event re-
constructions can lose the fine temporal resolution that
event cameras provide. They might also introduce arti-
facts or noise, especially in scenes with fast-moving ob-
jects or low event rates. For additional details on the
use of event reconstructions, kindly refer to https:
//github.com/uzh-rpg/rpg_e2vid.

• Frame2Spike. For the use of spikes as the event em-
bedding, we follow Kim et al. [9] by converting the raw
events εi into spikes Ispki ∈ RH×W as the input to the
event-based semantic segmentation network. The spike
representation keeps the data in its raw form – as indi-
vidual spikes or events. This representation preserves the
high temporal resolution of the event data and is highly
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efficient in terms of memory and computation, especially
for sparse scenes. The rate coding is used as the spike
encoding scheme due to its reliable performance across
various tasks. Each pixel value with a random num-
ber ranging between [smin, smax] at every time step is
recorded, where smin and smax are the minimum and
maximum possible pixel intensities, respectively. If the
random number is greater than the pixel intensity, the
Poisson spike generator outputs a spike with amplitude
1. Otherwise, the Poisson spike generator does not yield
any spikes. The spikes in a certain time window are ac-
cumulated to generate a frame, where such frames will
serve as the input to the event-based semantic segmen-
tation network. It is worth noting that processing raw
spike data requires specialized algorithms, often inspired
by neuromorphic computing. It might not be suitable
for traditional image processing techniques and can be
challenging to interpret and visualize. For additional de-
tails on the use of spikes, kindly refer to https://
github.com/Intelligent-Computing-Lab-
Yale/SNN-Segmentation.
To sum up, each event representation has its unique char-

acteristics and is suitable for different applications or pro-
cessing techniques. Our proposed OpenESS framework is
capable of leveraging each of the above event representa-
tions for efficient and accurate event-based semantic seg-
mentation in an annotation-free and open-vocabulary man-
ner. Such a versatile and flexible way of learning verifies the
broader application potential of our proposed framework.

A.5. Evaluation Configuration

Following the convention, we use the Intersection-over-
Union (IoU) metric to measure the semantic segmentation
performance for each semantic class. The IoU score can be
calculated via the following equation:

IoU =
TP

TP + FP + FN
, (4)

where TP (True Positive) denotes pixels correctly classi-
fied as belonging to the class; FP (False Positive) denotes
pixels incorrectly classified as belonging to the class; and
FN (False Negative) denotes pixels that belong to the class
but are incorrectly classified as something else.

The IoU metric measures the overlap between the pre-
dicted segmentation and the ground truth for a specific
class. It returns a value between 0 (no overlap) and 1 (per-
fect overlap). It is a way to summarize the mIoU values
for each class into a single metric that captures the overall
performance of the model across all classes, i.e., mean IoU
(mIoU). The mIoU of a given prediction is calculated as:

mIoU =
1

C

C∑
i=1

IoUi , (5)

where C is the number of classes and IoUi denotes the
score of class i. mIoU provides a balanced measure since
each class contributes equally to the final score, regardless
of its size or frequency in the dataset. A higher mIoU indi-
cates better semantic segmentation performance. A score of
1 would indicate perfect segmentation for all classes, while
a score of 0 would imply an absence of correct predictions.
In this work, all the compared approaches adopt the same
mIoU calculation as in the ESS benchmarks [2, 16]. Addi-
tionally, we also report the semantic segmentation accuracy
(Acc) for the baselines and the proposed framework.

B. Additional Experimental Results

In this section, we provide the class-wise IoU scores for
the experiments conducted in the main body of this paper.

B.1. Annotation-Free ESS

The per-class zero-shot event-based semantic segmenta-
tion results are shown in Tab. E. For almost every seman-
tic class, we observe that the proposed OpenESS achieves
much higher IoU scores than MaskCLIP [19] and FC-CLIP
[18]. This validates the effectiveness of OpenESS for con-
ducting efficient and accurate event-based semantic seg-
mentation without using either the event or frame labels.

B.2. Annotation-Efficient ESS

The per-class linear probing event-based semantic seg-
mentation results are shown in the first block of Tab. F and
Tab. G. Specifically, compared to the random initialization
baseline, a self-supervised pre-trained network always pro-
vides better features. The quality of representation learning
often determines the linear probing performance. The net-
work pre-trained using our frame-to-event contrastive distil-
lation and text-to-event consistency regularization tends to
achieve higher event-based semantic segmentation results
than MaskCLIP [19] and FC-CLIP [18]. Notably, such im-
provements are holistic across almost all eleven semantic
classes in the dataset. These results validate the effective-
ness of the proposed OpenESS framework in tackling the
challenging event-based semantic segmentation task.

The per-class annotation-efficient event-based seman-
tic segmentation results of the frame2vodel and
frame2recon settings under 1%, 5%, 10%, and 20%
annotation budgets are shown in Tab. F and Tab. G, re-
spectively. Similar to the findings and conclusions drawn
above, we observe clear superiority of the proposed Ope-
nESS framework over the random initialization, MaskCLIP
[19], and FC-CLIP [18] approaches. Such consistent perfor-
mance improvements validate again the effectiveness and
superiority of the proposed frame-to-event contrastive dis-
tillation and text-to-event consistency regularization. We
hope our framework can lay a solid foundation for future
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Table F. The per-class segmentation results of annotation-efficient event-based semantic segmentation approaches on the test set of
DSEC-Semantic [16]. All approaches adopted the frame2voxel representation. Scores reported are IoUs in percentage (%). For each
semantic class under each experimental setting, the best score in each column is highlighted in bold.
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Linear Probing
Random 6.70 7.85 3.37 0.00 0.00 0.00 38.60 0.00 23.83 0.01 0.00 0.00 37.94

MaskCLIP [19] 33.08 75.04 65.06 4.63 0.00 6.47 77.06 17.07 55.89 52.17 0.69 9.78 76.39
FC-CLIP [18] 43.00 92.53 72.59 12.43 0.02 0.00 88.14 52.84 71.92 64.02 10.54 7.95 86.00

OpenESS (Ours) 44.26 93.64 75.40 11.82 1.16 0.75 90.29 57.96 73.15 65.36 9.69 7.67 87.55

Fine-Tuning (1%)
Random 26.62 81.63 33.13 1.77 0.97 7.58 76.81 17.45 51.05 18.64 0.37 3.40 70.04

MaskCLIP [19] 33.89 87.56 53.24 2.34 0.60 8.92 81.71 25.76 59.37 42.56 2.52 8.24 77.79
FC-CLIP [18] 39.12 91.64 59.78 8.93 0.00 7.84 87.58 46.58 66.87 51.30 4.74 5.10 82.12

OpenESS (Ours) 41.41 93.01 74.01 3.21 10.78 14.58 84.50 34.78 69.82 55.12 4.47 11.21 84.41

Fine-Tuning (5%)
Random 31.22 77.13 50.32 12.36 1.26 0.00 86.03 41.22 21.48 50.67 2.96 0.04 71.38

MaskCLIP [19] 37.03 91.09 60.52 4.35 11.90 11.73 81.24 23.56 61.77 45.93 2.75 12.45 79.58
FC-CLIP [18] 43.71 92.91 71.21 10.84 0.00 5.60 90.11 57.54 71.30 61.04 11.41 8.81 86.38

OpenESS (Ours) 44.97 93.58 70.18 8.44 18.22 11.01 89.72 57.76 67.44 56.06 9.59 12.70 85.46

Fine-Tuning (10%)
Random 33.67 85.79 49.85 6.78 8.00 15.51 80.78 25.72 58.18 29.97 0.82 8.93 76.69

MaskCLIP [19] 38.83 92.34 69.96 3.64 5.85 12.98 82.23 23.61 66.39 53.23 3.47 13.46 82.36
FC-CLIP [18] 44.09 93.62 72.86 10.88 0.00 8.23 89.81 57.05 71.95 60.64 9.58 10.42 86.66

OpenESS (Ours) 46.25 93.92 73.34 8.13 18.61 15.41 89.03 52.56 71.76 61.71 9.99 14.26 86.72

Fine-Tuning (20%)
Random 41.31 91.08 67.90 4.68 17.90 17.41 85.11 43.24 66.62 43.95 5.03 11.55 82.99

MaskCLIP [19] 42.40 93.19 72.49 5.52 18.21 16.17 84.29 35.04 69.44 54.47 2.43 15.15 84.09
FC-CLIP [18] 47.77 91.05 70.90 7.04 21.10 14.84 91.13 64.28 71.62 61.73 13.25 18.55 86.95

OpenESS (Ours) 48.28 94.21 74.66 10.49 20.46 16.27 90.15 57.66 73.71 63.95 11.20 18.29 87.57

works in the established annotation-efficient event-based
semantic segmentation.

C. Qualitative Assessment

In this section, we provide sufficient qualitative exam-
ples to further attest to the effectiveness and superiority of
the proposed framework.

C.1. Open-Vocabulary Examples

The key advantage of our proposed OpenESS framework
is its capability to leverage open-world vocabularies from
the CLIP text embedding space. Unlike prior event-based
semantic segmentation, which relies on pre-defined and
fixed categories, our open-vocabulary segmentation aims to
understand and categorize image regions into a broader, po-
tentially unlimited range of categories. We provide more
open-vocabulary examples in Fig. D. As can be observed,
given proper text prompts like “road”, “sidewalk”, and
“building”, our proposed OpenESS framework is capable

of generating semantically meaningful attention maps for
depicting the corresponding regions. Such a flexible frame-
work can be further adapted to new or unseen categories
without the need for extensive retraining, which is particu-
larly beneficial in dynamic environments where new objects
or classes might frequently appear. Additionally, the open-
vocabulary segmentation pipeline allows users to work with
a more extensive range of objects and concepts, enhancing
the user experience and interaction capabilities.

C.2. Visual Comparisons

In this section, we provide more qualitative comparisons
of our proposed OpenESS framework over prior works
[16, 19] on the DSEC-Semantic dataset. Specifically, the vi-
sual comparisons are shown in Fig. E and Fig. F. As can be
observed, OpenESS shows superior event-based semantic
segmentation performance over prior works across a wide
range of event scenes under different lighting and weather
conditions. Such consistent segmentation performance im-
provements provide a solid foundation to validate the ef-
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Table G. The per-class segmentation results of annotation-efficient event-based semantic segmentation approaches on the test set of
DSEC-Semantic [16]. All approaches adopted the frame2recon representation. Scores reported are IoUs in percentage (%). For each
semantic class under each experimental setting, the best score in each column is highlighted in bold.
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Linear Probing
Random 6.22 7.55 5.48 0.00 0.00 0.00 39.79 0.00 15.64 0.01 0.00 0.00 36.60

MaskCLIP [19] 27.09 59.82 62.14 1.60 0.00 4.54 69.71 5.34 47.85 38.51 0.40 8.12 70.59
FC-CLIP [18] 40.08 89.22 69.08 14.62 26.90 0.00 83.14 21.79 69.56 57.78 7.86 0.92 82.70

OpenESS (Ours) 44.08 88.56 61.43 6.05 21.54 12.36 91.43 63.04 64.01 60.52 6.18 9.76 84.48

Fine-Tuning (1%)
Random 23.95 76.37 29.59 1.73 0.00 5.75 78.12 9.73 48.96 11.56 0.28 1.38 69.20

MaskCLIP [19] 30.73 79.25 47.26 0.13 1.17 5.04 78.78 19.72 56.13 43.74 1.13 5.70 74.25
FC-CLIP [18] 38.99 87.75 61.48 3.47 4.60 8.06 88.96 55.12 64.41 47.16 3.61 4.23 82.90

OpenESS (Ours) 43.17 87.85 66.15 8.82 21.52 12.41 89.36 55.35 72.45 48.76 3.40 8.81 84.56

Fine-Tuning (5%)
Random 30.42 80.25 38.43 5.50 13.45 9.08 83.45 30.88 51.75 19.53 0.16 2.19 73.65

MaskCLIP [19] 36.33 85.80 60.43 2.60 8.70 7.47 83.10 34.04 64.80 39.60 3.07 10.00 80.37
FC-CLIP [18] 43.34 88.28 64.90 6.94 20.96 9.58 91.18 62.35 68.09 52.39 4.93 7.16 84.93

OpenESS (Ours) 45.58 89.11 70.83 10.92 20.21 1.99 91.04 60.76 72.07 67.91 12.90 3.69 86.93

Fine-Tuning (10%)
Random 34.11 81.85 46.28 4.87 11.30 10.20 85.32 43.16 55.34 32.72 1.28 2.90 77.48

MaskCLIP [19] 40.13 87.31 62.54 4.93 5.09 12.86 88.30 50.60 64.74 55.21 0.32 9.51 83.52
FC-CLIP [18] 45.35 89.71 69.00 6.64 22.37 8.33 91.20 64.09 69.34 61.73 7.23 9.19 86.29

OpenESS (Ours) 48.94 90.63 71.68 12.41 29.32 9.42 92.53 66.19 73.76 69.03 10.71 12.71 87.84

Fine-Tuning (20%)
Random 39.25 87.14 61.80 6.77 3.51 13.19 88.53 56.12 61.95 44.65 1.29 6.84 82.51

MaskCLIP [19] 43.37 89.83 69.80 7.07 8.93 10.67 88.88 52.65 70.71 60.03 3.10 15.39 85.69
FC-CLIP [18] 47.18 91.20 71.39 11.53 24.92 9.60 91.58 63.88 71.52 63.44 7.55 12.36 87.07

OpenESS (Ours) 49.74 91.28 73.43 10.69 27.18 13.85 92.84 67.59 74.20 69.22 10.62 16.21 88.26

fectiveness and superiority of the proposed frame-to-event
contrastive distillation and text-to-event consistency regu-
larization. For additional qualitative comparisons, kindly
refer to Appendix C.4.

C.3. Failure Cases

As can be observed from Fig. D, Fig. E, and Fig. F,
the existing event-based semantic segmentation approaches
still have room for further improvements. Similar to the
conventional semantic segmentation task, it is often hard
to accurately segment the boundaries between the seman-
tic objects and backgrounds. In the context of event-based
semantic segmentation, such a problem tends to be partic-
ularly overt. Unlike traditional cameras that capture dense,
synchronous frames, event cameras generate sparse, asyn-
chronous events, which brings extra difficulties for accurate
boundary segmentation. Meanwhile, the current framework
finds it hard to accurately predict the minor classes, such
as fence, pole, wall, and traffic-sign. We believe these are
potential directions that future works can explore to fur-

ther improve the event-based semantic segmentation perfor-
mance on top of existing frameworks.

C.4. Video Demos

In addition to the qualitative examples shown in the main
body and this supplementary file, we also provide several
video clips to further validate the effectiveness and supe-
riority of the proposed approach. Specifically, we provide
three video demos in the attachment, named demo1.mp4,
demo2.mp4, and demo3.mp4. The first two video de-
mos show open-vocabulary event-based semantic segmen-
tation examples using the class names and open-world vo-
cabularies as the input text prompts, respectively. The third
video demo contains qualitative comparisons of the seman-
tic segmentation predictions among our proposed OpenESS
and prior works. All the provided video sequences val-
idate again the unique advantage of the proposed open-
vocabulary event-based semantic segmentation framework.
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Kindly refer to our GitHub repository1 for additional details
on accessing these video demos.

D. Broader Impact

In this section, we elaborate on the positive societal
influence and potential limitations of the proposed open-
vocabulary event-based semantic segmentation framework.

D.1. Positive Societal influence

Event-based cameras can capture extremely fast motions
that traditional cameras might miss, making them ideal for
dynamic environments. In robotics, this leads to better ob-
ject detection and scene understanding, enhancing the ca-
pabilities of robots in the manufacturing, healthcare, and
service industries. In autonomous driving, event-based se-
mantic segmentation provides high temporal resolution and
low latency, which is crucial for detecting sudden changes
in the environment. This can lead to faster and more accu-
rate responses, potentially reducing accidents and enhanc-
ing road safety. Our proposed OpenESS is designed to re-
duce the annotation budget and training burden of existing
event-based semantic segmentation approaches. We believe
such an efficient way of learning helps increase the scala-
bility of event-based semantic segmentation systems and in
turn contributes positively to impact society by enhancing
safety, efficiency, and performance in various aspects.

D.2. Potential Limitation

Although our proposed framework is capable of conduct-
ing annotation-free and open-vocabulary event-based se-
mantic segmentation and achieves promising performance,
there tend to exist several potential limitations. Firstly, our
current framework requires the existence of synchronized
event and RGB cameras, which might not be maintained
by some older event camera systems. Secondly, we di-
rectly adopt the standard text prompt templates to gener-
ate the text embedding, where a more sophisticated design
could further improve the open-vocabulary learning ability
of the existing framework. Thirdly, there might still be some
self-conflict problems in our frame-to-event contrastive dis-
tillation and text-to-event consistency regularization. The
design of a better representation learning paradigm on the
event-based data could further resolve these issues. We be-
lieve these are promising directions that future works can
explore to further improve the current framework.

E. Public Resources Used

In this section, we acknowledge the use of public re-
sources, during the course of this work.

1https://github.com/ldkong1205/OpenESS

E.1. Public Datasets Used

We acknowledge the use of the following public datasets,
during the course of this work:
• DSEC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DSEC-Semantic3 . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DDD174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DDD17-Seg5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• E2VID-Driving6 . . . . . GNU General Public License v3.0

E.2. Public Implementations Used

We acknowledge the use of the following public imple-
mentations, during the course of this work:
• ESS7 . . . . . . . . . . . . . . . GNU General Public License v3.0
• E2VID8 . . . . . . . . . . . . . GNU General Public License v3.0
• HMNet9 . . . . . . . . . . . . . . . . . . . . . . . BSD 3-Clause License
• EV-SegNet10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
• SNN-Segmentation11 . . . . . . . . . . . . . . . . . . . . . . . Unknown
• CLIP12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• MaskCLIP13 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• FC-CLIP14 . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SLIC-Superpixels15 . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• Segment-Anything16 . . . . . . . . . . . . . . .Apache License 2.0

2https://dsec.ifi.uzh.ch
3https://dsec.ifi.uzh.ch/dsec-semantic
4http://sensors.ini.uzh.ch/news_page/DDD17.html
5https://github.com/Shathe/Ev-SegNet
6https://rpg.ifi.uzh.ch/E2VID.html
7https://github.com/uzh-rpg/ess
8https://github.com/uzh-rpg/rpg_e2vid
9https://github.com/hamarh/HMNet_pth

10https://github.com/Shathe/Ev-SegNet
11https://github.com/Intelligent-Computing-Lab-

Yale/SNN-Segmentation
12https://github.com/openai/CLIP
13https://github.com/chongzhou96/MaskCLIP
14https://github.com/bytedance/fc-clip
15https://github.com/PSMM/SLIC-Superpixels
16https://github.com/facebookresearch/segment-

anything
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction “road” ”sidewalk” GT”building”

Figure D. Qualitative examples of the language-guided attention maps generated by the proposed OpenESS framework. For each sample,
the regions with a high similarity score to the text prompts are highlighted. Best viewed in colors and zoomed-in for additional details.
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction MaskCLIP ESS-Sup OpenESS GT

Figure E. Qualitative comparisons (1/2) among different ESS approaches on the test set of DSEC-Semantic [16]. Best viewed in colors.
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Background Building Fence Person Pole Road Sidewalk Vegetation Car Wall Traffic-Sign

Event Reconstruction MaskCLIP ESS-Sup OpenESS GT

Figure F. Qualitative comparisons (2/2) among different ESS approaches on the test set of DSEC-Semantic [16]. Best viewed in colors.
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