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In this supplementary material, we first present additional editing results with more diverse representations, including 3D
Gaussian Splats (3DGS) [6] and 2D images, in Section S.1. Then, in Section S.2, we provide a more detailed derivation
of Posterior Distillation Sampling introduced in Section 4 of the main paper. Following that, Section S.3 presents the im-
plementation details of NeRF editing and SVG editing discussed in Sections 6.1 and 6.2 of the main paper, respectively.
Subsequently, Section S.4 provides the details of our user study setups. Lastly, the effect of the refinement stage, discussed
in Section 5 of the main paper, is detailed in Section S.5.

S.1. Editing 3D Gaussian Splats [6] and 2D Images
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Figure S1. Editing of more diverse representations, 3D Gaussian Splats [6] and 2D images. PDS consistently outperforms the
baselines. The target attributes are “Batman” and “raising the arms.”

PDS encompasses various editing scenarios, not confined within a specific parameter space. To further assess the versatility
and generalizability of PDS in editing tasks, we include both 3D Gaussian Splat (3DGS) [6] editing and 2D image editing.
As NeRF editing, Figure S1 shows that PDS outperforms Instruct-NeRF2NeRF [1] in 3DGS representation while uniquely
realizing geometric changes. In 2D image editing, PDS demonstrates superior performance compared to Imagic [5], which
is introduced for 2D image editing using pre-trained 2D diffusion models. PDS edits the input image while preserving other
details with high fidelity. On the other hand, Imagic [5] leaves artifacts, losing the identity of the source content.

S.2. Derivation of Posterior Distillation Sampling

For a comprehensive derivation of Equation 14 in the main paper, we first remind that the objective function of PDS is
expressed as:
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Following our notation ϵ̂src
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difference between the approximated posterior means is also expressed as follows:
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where µϕ(xt, y; ϵϕ) can be expanded as shown in the following equation:
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ᾱt
− 1ϵϕ(xt, y, t) (8)

= (γt + δt
√
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ᾱt)ϵt − γt

√
1

ᾱt
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Incorporating Equation 4 and Equation 5 into Equation 3, we can reformulate the objective function of PDS as follows:
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ᾱt−1 − γt − δt

√
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By taking the gradient of Lz̃t
with respect to θ while ignoring the U-Net jacobian term,
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Thus, the coefficients ψ(t) and χ(t) in Equation 14 of the main paper are as follows:
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In practice, we sample non-consecutive timesteps for t− 1 and t as in DDIM [9] since the coefficients become 0 when they
are consecutive. Given a sequence of non-consecutive timesteps [τi]Si=1, a more generalized form of PDS is represented as
follows:
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(a) Main problem (b) Vigilance task

Figure S2. NeRF editing user study screenshots. The participants are presented with NeRF scene videos and editing prompts, and
are asked to answer the following question: When editing the video in the black box as described right next
to it, which video do you expect to see? Please choose the most appropriate one.

(a) Main problem (b) Vigilance task

Figure S3. SVG editing user study screenshots. Given SVG images and editing prompts, the participants are asked to answer the follow-
ing question: When editing the image in the black box as described right next to it, which image
do you expect to see? Please choose the most appropriate one.

For more details on timestep sampling, refer to the implementation details in the next section.

S.3. Implementation Details

In this section, we provide the implementation details of NeRF and SVG editing presented in Section 6.1 and Section 6.2 of
the main paper, respectively.

NeRF Editing. We run the PDS optimization for 30,000 iterations with classifier-free guidance [3] weights within [30, 100]
depending on the complexity of editing. As detailed in Section S.2, we sample non-consecutive timesteps τi−1 and τi
since the coefficients ψ(·) and χ(·) become zero when the sampled timesteps are consecutive. For this, we define non-
consecutive timesteps [τi]

S
i=1, which is a subset sequence of the total forward process timesteps of the diffusion model,

[1, ..., T ]. Specifically, we select these timesteps such that τi = ⌊2i⌋, resulting in a subset sequence length of S = 500 out of
the total T = 1000 timesteps. We then randomly sample the index i within a ratio range of [0.02, 0.98], i.e., i ∼ U(10, 490).

During the refinement stage, we randomly choose and replace Ĩv every 10 iterations, over total 15,000 iterations. We
denote a SDEdit [7] operator by S(x0; t0, ϵϕ) which samples xt0 ∼ N (

√
ᾱt0x0, (1 − ᾱt0)I) then starts denoising it from

t0 using ϵϕ. For the denoising process, we randomly sample t0 within a ratio range of [0, 0.2] out of total denoising steps
N = 20.

SVG Editing. Across all optimizations, SDS [8], DDS [2], and our proposed PDS, we apply the same classifier-free
guidance weight of 100. For SDS [8], we sample t within a ratio range of [0.05, 0.95] following VectorFusion [4]. For
DDS [2], we follow its original setup, sampling t within [0.02, 0.98]. For PDS, we sample i out of a ratio range of [0.1, 0.98].

S.4. Details of User Studies

We conduct user studies for the human evaluation of NeRF and SVG editing through Amazon’s Mechanical Turk. We
collected survey responses only from those participants who passed our vigilance tasks. To design our vigilance tasks, we
create examples where, except for the correct answer choice, all other choices are replaced with ones from different scenes
or unrelated SVG examples. Screenshots of our NeRF and SVG editing user studies, including examples of vigilance tasks,
are displayed in Figure S2 and Figure S3, respectively. In the NeRF and SVG editing user studies, we received 42 and 17
valid responses, respectively.
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Figure S4. The effect of the refinement stage. The overall editing outcomes are determined before the refinement stage, whereas the
refinement stage plays the role of removing artifacts. The target attributes are “Batman” and “raising the arms.”

S.5. Effect of the Refinement Stage

Figure S4 illustrates an ablation study of the refinement stage across various editing methods. As depicted, the desired
complex edits — making the man raise his arms — are achieved solely through the optimization of PDS. The overall editing
outcomes are realized before the refinement stage, and the refinement stage further enhances the fidelity of the outputs.
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