Training Generative Image Super-Resolution Models by Wavelet-Domain Losses

Enables Better Control of Artifacts
Supplementary Material

1. Further Visual Comparison of SISR

We provide further visual comparisons of 4x SISR between
our proposed method WGSR and the other state-of-the-
art methods including ESRGAN-FS [3], ESRGAN+ [13],
RankSRGAN [15], SPSR [10], SRFlow-DA [6], LDL [7],
FxSR [11], PDASR [16], SROOE [12] and DualFormer [8]
in Fig. 2 to Fig. 7. From these visual comparisons, one can
draw consistent observations in line with the results in the
paper. Our proposed method WGSR not only suppresses
visual artifacts but also simultaneously restores structural
shapes and realistic details.

2. Perception-Distortion Trade-off

Fig. 1 provides perception-distortion points for our WGSR
and other state-of-the-art methods on PSNR-NRQM plane
for Setl4 [14], Urban100 [4] and DIV2K [1] validation
datasets. Our proposed method, WGSR, significantly im-
proves fidelity and perceptual scores across all datasets, re-
sulting in a better PD trade-off point. Specifically, WGSR
achieves the highest NRQM [9] scores on Urban100 and
DIV2K datasets when compared to other methods with
comparable PSNR scores. This also validates the gener-
alization performance of the proposed WGSR to different
benchmarks.

3. Further Visual Comparison of Different
Wavelet Filters

The visual comparison of proposed WGSR method with
different wavelet families [5] for 4x SISR is shown in Fig.
8. We observe that visual performance varies according to
the choice of wavelet family and the results show that the
best perception-distortion trade-off point is achieved by the
Symlet “sym7” filter. However, all wavelet filters notably
mitigate artifacts while providing photo-realistic SR results.
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Figure 1. Perception-distortion trade-off performance of our
model WGSR compared to other state-of-the-art methods on the
PSNR-NRQM plane.
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ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(18.20/0.216) (14.64/0.179) (18.24/0.193) (18.9870.188) (19.26/0.156) (19.64/0.176)

ESRGAN+ [13] RankSRGAN [15]  LDL [7] PDASR [16] DualFormer [8] HR (img-807)
(17.83/0.187) (14.9970.230) (18.02/0.167) (19.40/0.200) (16.58/0.172) (PSNRT/DISTS][2])
ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(29.56/0.169) (29.92/0.127) (31.11/0.167) (31.64/0.166) (31.02/0.167) (31.85/0.147)

ESRGAN+ [13] RankSRGAN [15]  LDL[7] PDASR [16] DualFormer [8] HR (img-812)
(26.33/0.191) (28.04/0.138) (28.75/0.149) (31.22/0.177) (31.59/0.150) (PSNR?1/DISTS/[2])
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ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(22.88/0.203) (24.96/0.238) (24.84 /0.190) (24.95/0.194) (26.11/0.183)
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ESRGAN+ [13] RankSRGAN [15]  LDL [7] PDASR [16] DualFormer [8] HR (img-814)
(22.49/0.218) (21.09/0.214) (24.41/0.179) (25.7210.222) (24.7310.206) (PSNR?1/DISTS/[2])

Figure 2. Visual comparison of the proposed wavelet-guided perceptual optimization method with the state-of-the-art for x4 SR on natural
images from DIV2K validation set [1]. The proposed WGSR has clear advantages in reconstructing realistic high-frequency details while
inhibiting artifacts.



ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(24.76 /1 0.130) (22.2870.175) (27.88/0.126) (26.28 /0.140) (27.39/0.120) (27.99/70.115)

ESRGAN+ [13] RankSRGAN [15]  LDL [7] PDASR [16] DualFormer [8] HR (img-820)
(20.79/70.179) (24.66/0.175) (24.91/0.133) (27.7770.120) (26.08/0.118) (PSNRT/DISTS][2])

ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(21.00/0.146) (20.86/0.145) (21.34/0.140) (21.67/0.138) (23.26/0.126) (24.19/70.121)

ESRGAN+ [13] RankSRGAN [15] LDL[7] PDASR [16] DualFormer [8] HR (img-826)
(19.53/0.168) (20.29/0.148) (21.66/0.136) (22.66/0.154) (23.24/0.117) (PSNRT/DISTS|[2])
ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(26.38/0.129) (27.2570.123) (28.32/0.136) (28.70/0.134) (29.13/0.127) (29.70/0.120)
ESRGAN+ [13] RankSRGAN [15] LDL [7] PDASR [16] DualFormer [8] HR (img-832)
(24.51/70.173) (25.07/0.170) (27.8170.124) (29.99/0.136) (28.77/0.122) (PSNRT/DISTS{[2])

Figure 3. Visual comparison of the proposed wavelet-guided perceptual optimization method with the state-of-the-art for x4 SR on natural
images from DIV2K validation set [1].
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Figure 4. Visual comparison of the proposed wavelet-guided perceptual optimization method with the state-of-the-art for x4 SR on natural
images from DIV2K validation set [1].
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ESRGAN+ [13] RankSRGAN [15]  LDL [7] PDASR [16] DualFormer [8] HR (img-881)
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Figure 5. Visual comparison of the proposed wavelet-guided perceptual optimization method with the state-of-the-art for x4 SR on natural
images from DIV2K validation set [1].
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ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
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Figure 6. Visual comparison of the proposed wavelet-guided perceptual optimization method with the state-of-the-art for x4 SR on natural
images from Urban100 validation set [4].



ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
(18.36/0.283) (19.31/0.278) (19.9270.258) (19.4470.251) (19.94/0.256) (20.98/0.252)

ESRGAN+ [13] RankSRGAN [15]  LDL [7] PDASR [16] DualFormer [8] HR (img-74)

(17.8570.258) (18.81/0.294) (20.06 /7 0.245) (21.0870.219) (20.66/0.251) (PSNRT/DISTS][2])
ESRGAN-FS [3] SPSR [10] SRFlow-DA [6] FxSR [11] SROOE [12] WGSR (Ours)
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(26.59/0.161) (27.75170.127) (30.61/0.109) (31.10/0.094) (30.26/0.122) (PSNRT/DISTS/[2])

Figure 7. Visual comparison of the proposed wavelet-guided perceptual optimization method with the state-of-the-art for x4 SR on natural
images from Urban100 validation set [4].
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Figure 8. Visual comparison of WGSR method with different wavelet families for 4x SR on DIV2K [1].
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