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Appendix

In this appendix, we report additional results, visualiza-
tions and implementation details. We first conduct valida-
tion experiments for VTCD to show that the discovered con-
cepts align with human-interpretable groundtruth labels in
Section 7.1. We then provide statistics of concepts impor-
tance distribution between layers in Section 7.2. Next, in
Section 7.3, we provide further discussion and qualitative
results showing how different concepts are captured in dif-
ferent self-attention heads from the same layer. We provide
further implementation details in Section 8. Finally, we dis-
cuss limitations of VTCD in Section 9. Note that we include
additional video results and corresponding discussions on
the project web page.

7. Additional results

7.1. Concept validation

Directly measuring concept accuracy is not possible in an
open world approach as we don’t know a priori what con-
cepts should be present in a model. There are, however,
special cases where we can directly measure the accuracy
of some of the concepts. For example, TCOW is trained to
track through occlusions, so we can expect to find concepts
that correspond to the target object and containers/occluders
in it. We perform this evaluation for VTCD and the random
crop baseline [24, 25, 72] and report the mIoU between the
best found concepts and the groundtruth masks in Table 4
(top). These results validate the accuracy of VTCD, which
is able to reach up to 94% of the performance of the fully-
supervised TCOW by discovering concepts in its interme-
diate representations.

7.2. Quantitative analysis of per-layer concept im-
portance

We now quantify the importance of each model layer for the
two target models analyzed in Section 5.2 in the main paper.
To this end, we calculate the average concept importance
ranking per-layer and then normalize this value, which re-
sults in a [0 − 1] score, where higher values indicate more
important layers, and plot the results in Figure 8.

We immediately see similarities and differences between
the two models. For example, the first two layers are less
important than mid layers for both models. For Video-
MAE, the middle (6) and end layer (12) are the most im-
portant. Interestingly, for TCOW, the most important layer
by far is layer 3, while the final layer is the least impor-
tant. This makes intuitive sense since TCOW is an object
tracking model, hence it most heavily utilizes spatiotempo-
ral positional information and object-centric representations

Method Target Occluders Containers

Baseline 3.0 31.5 43.3
VTCD (Ours) 19.2 69.7 73.8

TCOW (supervised) 36.8 76.8 78.2

Table 4. Evaluating the accuracy of object tracking concepts found
in the TCOW model by VTCD and the random crop baseline used
in other recent methods [24, 25, 72].
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Figure 8. The average concept importance over all model lay-
ers for a VOS model (TCOW) and an action recognition model
(VideoMAE). Interestingly, while VideoMAE encodes important
concepts both in the middle and late in the model, TCOW encodes
most important concepts at layer three and the least important in
the final layer.

in early-to-mid layers. In contrast, VideoMAE is trained
for action classification, which requires fine-grained, spa-
tiotemporal concepts in the last layers.

7.3. Uniqueness of head concepts

As discussed in Section 4 in the main paper, we qualita-
tively visualize the concepts from the same layer but dif-
ferent heads of a model to demonstrate that the heads en-
code diverse concepts. For example, Figure 9 shows that
discovered concepts in heads one and six in layer five of
the TCOW [66] model encode unrelated concepts (e.g. po-
sitional and falling objects). This corroborates existing
work [2, 20, 36, 50, 67] that heads capture independent in-
formation and are therefore a necessary unit of study using
VTCD.

8. Implementation details

Concept discovery. When generating tubelets (Sec-
tion 3.1.1), we use 12 segments and set all other hyperpa-
rameters to the Scikit-Image [65] defaults, except for the
compactness parameter, which is tuned on a held-out set
for each model to the following values: TCOW - 0.01,
VideoMAE - 0.1, SSL-VideoMAE - 0.1, InternVideo - 0.15.
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Figure 9. Different heads in the same layer encode concepts cap-
turing different phenomena. In layer 5 of TCOW [66], head 6
(top two rows) highlights falling objects, while head 1 (bottom
two rows) captures spatial position.

When clustering concepts using CNMF (Section 3.1.2) we
follow the same protocol as [2] and use the Elbow method,
with the Silhouette metric [57] as the distance, to select the
number of clusters with a threshold of 0.9.

Concept importance. For all importance rankings using
CRIS, we use the original loss the models were trained with.
For InternVideo, we use logit value for the target class by
encoding the class name with the text encoder, and then
taking the dot product between the text and video features.
We use 4,000 masking iterations for all models, except for
TCOW [66], where we empirically observe longer conver-
gence times and use 8,000 masks.

Concept pruning with VTCD. The six classes targeted in
the concept pruning application (Table 2 in the main paper)
are as follows:

1. Pouring something into something until it overflows
2. Spilling something behind something
3. Spilling something next to something
4. Spilling something onto something
5. Tipping something with something in it over, so some-

thing in it falls out
6. Trying to pour something into something, but missing so

it spills next to it

Semi-Supervised VOS with VTCD. To evaluate VOS per-
formance on the DAVIS’16 benchmark [52] with any pre-
trained video transformer, we first identify self-attention
heads that encode object-centric concepts on the training
set. Specifically, we calculate the mIoU between every con-
cept found by VTCD (i.e. the set of tubelets belonging to
that concept) and the groundtruth labels for each training
video. We then record the heads in which the best perform-
ing concepts came from. Next, we run VTCD on the valida-

tion set using only the heads containing object-centric con-
cepts. To select the final concept for evaluation, we choose
the one with the highest mIoU with the first frame label (i.e.
the query mask).

To generate tubelets for an entire video, we simply use
non-overlapping sliding windows and run SLIC on the tem-
porally concatenated features. We also leverage SAM [38]
for post-processing the tubelets generated by VTCD. Note
that SAM can take as input a set of points, a bounding box,
or both. For each frame and corresponding mask from the
VTCD tubelet, we generate the smallest bounding box sur-
rounding the mask. We also calculate the centroid of the
mask and then sample two points from a Gaussian centered
at the centroid, with covariance (L/10,W/10) where L and
W are the length and width of the mask, respectively. We
then pass both the box and points to SAM ViT-h to produce
the post-processed mask for that frame.

9. Limitations

One limitation of our method is the need to manually set the
SLIC compactness hyper-parameter. Additionally, the com-
pactness property of SLIC makes it challenging to capture
concepts that are not spatially localized. Finally, there is a
high computational requirement for computing the Rosetta
score in Equations 7 and 8 as D grows.
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Thomas Serre. CRAFT: Concept recursive activation factor-
ization for explainability. In CVPR, 2023. 1, 2, 3, 4, 5, 6

[26] Ruohan Gao, Dinesh Jayaraman, and Kristen Grau-
man. Object-centric representation learning from unlabeled
videos. In ACCV, 2017. 8

[27] Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich,
Manli Shu, Micah Goldblum, Andrew Gordon Wilson, and
Tom Goldstein. What do vision transformers learn? a visual
exploration. arXiv preprint arXiv:2212.06727, 2022. 1, 7, 8

[28] Amir Ghodrati, Efstratios Gavves, and Cees G. M. Snoek.
Video time: Properties, encoders and evaluation. In BMVC,
2018. 3

[29] Amirata Ghorbani, James Wexler, James Y Zou, and Been
Kim. Towards automatic concept-based explanations. In
NeurIPS, 2019. 1, 2, 3, 6



[30] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax,
and Roland Memisevic. The “something something” video
database for learning and evaluating visual common sense.
In ICCV, 2017. 5

[31] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, and Charles Herrmann. Kubric: A
scalable dataset generator. In CVPR, 2022. 5

[32] Isma Hadji and Richard P Wildes. A new large scale dynamic
texture dataset with application to convnet understanding. In
ECCV, 2018. 3

[33] Sven Ove Hansson, Matts-Åke Belin, and Björn Lundgren.
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