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7. Introduction

This document provides additional material that is supple-

mental to our main submission. Section 8 outlines the algo-

rithms used in our technical approach. Section 9 describes

additional implementation details for our approach, includ-

ing further Visual Concept Connectome (VCC) generation

settings, model details, clustering details and target classes

chosen for evaluation. Section 10 provides additional em-

pirical results in terms of validation of the segment proposal

method, validation of the concept discovery method, valida-

tion of the interlayer testing with concept activation vector

(ITCAV) method, VCC visualizations comparing models,

classes, and layers, as well as VCCs with a larger number of

layers, including all layers. Section 12 discusses the limita-

tions of VCCs and our associated methodology to generate

them. Section 13 discusses the societal implications, both

positive and negative, of our method. Finally, Section 14

details the used assets and accompanying licenses.

8. Algorithms

In this section, we present pseudocode for the three main

algorithmic components of our method: (i) Top-down fea-

ture segmentation (Sec. 3.1 in the main paper), (ii) Layer-

wise concept discovery (Sec. 3.2 in the main paper) and (iii)

Interlayer testing with concept activation vectors (ITCAV)

(Sec. 3.3 in the main paper). The top-down feature seg-

mentation method is shown in Algorithm 1. The layer-wise

concept discovery method is shown in Algorithm 2. Finally,

The ITCAV method is shown in Algorithm 3. All references

to equations in the algorithms refer to equations in the main

paper.

9. Implementation details

VCC settings. 50 target images are used to generate each

VCC. The statistical testing and training of the CAVs [29]

use 20 unique sets of random images from the Broden

dataset [3]. When computing the concept connection edge

weight between the final selected layer and the class logit,

the standard TCAV [29] score is used.

Model settings. For the CLIP-ResNet50 [42] experi-

ments (Sec. 10.3), we follow the original paper [42] and

compute the logit for each ImageNet [15] class using a sin-

gle query sentence ‘a photo of a {class}’; where ‘{class}’ is

the target ImageNet class. The layer names used (according

to the PyTorch [41] module nomenclature) for each model

when generating all four-layer VCCs are as follows:

Algorithm 1 Top-Down Feature Segmentation

Input: Model F , Set of images I , n selected layers of F to
study, Spatial clustering algorithm C

seg

/*Cseg is instatiated in terms of maskSLIC [28]*/
Output: Set of RGB image masks M
/*Set lists for collection of masks and activations*/

1: M [],
2: for j 2 n do
3: Mj , Zj  [], []
4: end for

/*Collect activations at each layer, Eq. (1)*/

5: for Ii
2 I do

6: for j 2 n do

7: zij  fj(I
i)

8: Zj .append(zij)
9: end for

10: end for
/*Iterate through all images*/

11: for i 2 |I| do
/*Iterate through layers top-down*/

12: for j 2 {n, . . . , 1} do

13: Bi
j  []

/*All features considered at top layer*/
14: if j == n then

15: eB
i

j+1(p; 1) {1}hj×wj

16: Γ
i
j  silhouette(zij(p) � eB

i

j+1(p; 1))

17: {Bi
j(p; �)}

Γ
i
j

γ  C
seg

Γ
i
j

(zij(p) � eB
i

j+1(p; 1))

18: Bi
j .append({Bi

j(p; �)}
Γ
i
j

γ )
19: else

/*Top-down masking for all other layers*/

20: for Bi
j+1(p; k) 2 {Bi

j+1}
Γ
i
j+1

γ do
/*Bilinear interpolate mask to feature shape*/

21: eB
i

j+1(p; k) BiInterp(Bi
j+1(p; k), zij .shape)

/*Mask with higher layer binary mask, Eq. (2)*/

22: Γ
i
j  silhouette(zij(p) � eB

i

j+1(p; k))

23: {Bi
j(p; �)}

Γ
i
j

γ  C
seg

Γ
i
j

(zij(p) � eB
i

j+1(p; k))

24: Bi
j .append({Bi

j(p; �)}
Γ
i
j

γ )
25: end for
26: end if

/*Create and save RGB Masks, Eq. (3)*/

27: for Bi
j(p; �) 2 Bi

j do

28: Mi
j(p; �) Ii

� Bi
j(p; �)

29: Mj .append(Mi
j(p; �))

30: end for
31: M.append(Mj)
32: end for
33: end for

Return M



ResNet50 VGG16 MViT ViT-b

RF ACE Ours RF ACE Ours RF ACE Ours RF ACE Ours

Layer1 43 2.4 4.2 10 2.8 3.5 224 1.7 7.5 224 1.3 10.0

Layer2 99 2.0 11.9 32 2.4 6.8 224 1.0 15.2 224 1.7 24.4

Layer3 211 1.92 23.9 80 2.2 15.5 224 2.5 28.1 224 2.4 35.8

Layer4 435 2.1 47.9 176 2.2 46.8 224 2.4 50.1 224 2.4 54.1

Table 1. Validation of segment proposal component of our method (Sec. 3.1). The relative concept segment size compared to the entire

image for a given layer, is shown with the receptive field (RF) width/height of the same layer. We compare our method (Ours) to the

baseline method, ACE [23]. For all models, the relative segment size discovered using our method has a stronger correlation with the

receptive field size than the concepts discovered using ACE.

Algorithm 2 Concept Discovery

Input: Model F , n selected layers of F to study, Set of

RGB Image Masks at each Layer M = {M1, ...,Mn},

Clustering algorithm C
con

/*Ccon is instatiated in terms of k-means [35]*/

Output: Set of concept centroids Q = {Q1, ...,Qn}
1: Q []

2: for j 2 n do

/*Cluster segment activations, Eq. (4)*/

3: ZMj
 fj(Mj)

4: Qj  C
con(GAP(ZMj

))
/*Prune clusters (see Sec. 4.1) for details*/

5: Qj  prune(Qj)

6: Q.append(qj)

7: end for

Return Q

1. ResNet18 [25], ResNet50 [25] and CLIP-ResNet50 [42]:

Layer1, Layer2, Layer3, Layer4

2. VGG16 [48]: 8, 15, 22, 29

3. MobileNetv3 [44]: 0, 2, 4, 6

4. MViT [18]: 1, 3, 9, 15

5. ViT-b [51]: 2, 5, 8, 10

The layer names used (according to the PyTorch [41]

module nomenclature) for each model when generating the

all-layer VCCs are as follows:

1. ResNet50 [42]: layer1.0, layer1.1, layer1.2, layer2.0,

layer2.1, layer2.2, layer2.3, layer3.0, layer3.1, layer3.2,

layer3.3, layer3.4, layer3.5, layer4.0, layer4.1, layer4.2

2. VGG16 [48]: 1, 3, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29

3. MobileNetv3 [44]: 0.0, 1.0, 1.1, 2.0, 2.1, 2.2, 3.0, 3.1,

3.2, 3.3, 4.0, 4.1, 5.0, 5.1, 5.2, 6.0

4. MViT [18]: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15

5. ViT-b [51]: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Clustering details. Following previous work [23], dur-

ing the concept discovery clustering, Ccon, we over-cluster

and then prune to ensure that fewer concepts will be missed.

We follow previous work [23] and choose the number of

Algorithm 3 Interlayer Testing with Concept Activation

Vectors

Input: Model F , higher layer selected to study l, lower

layer selected to study j, Concept Centroid for higher

layer q
ml

l , Concept centroid for lower layer q
mj

j , Set

of RGB image masks each associated with higher layer

concept centroid Mq
ml
l

, Set of RGB image masks each

associated with lower layer concept centroid M
q
mj

j

, Set

of random images Irnd, Linear classifier h

Output: Concept connection edge weight between

concepts q
mj

j and q
ml

l : e
q
mj

j
,q

ml
l

/*Get activations for lower level concept*/

1: zM
q
mj
j

 fj(Mq
mj

j

)

/*Get activations for random concept*/

2: zIrnd
 fj(Irnd)

/*Train CAV and get orthogonal vector to hyperplane

in direction of lower concept*/

3: V
q
mj

j

 h(zM
q
mj
j

,zIrnd
).train()

4: CountPositive 0

/*Iterate through higher concept segments*/

5: for x 2Mq
ml
l

do

6: zj  fj(x)
/*Get gradient of segment at layer l with respect to

lower layer j*/

7: gj  rfj ||fl(zj)� q
ml

l ||2
/*Calculate sensitivity of upper concept to lower con-

cept, Eq. (5)*/

8: S
q
mj

j
,q

ml
l

= gj · V
q
mj

j

9: if S
q
mj

j
,q

ml
l

> 1 then

10: CountPositive = CountPositive + 1

11: end if

12: end for

/*Calculate fraction of positive alignments, Eq. (6)*/

13: e
q
mj

j
,q

ml
l

= CountPositive
�

|Mq
ml
l

|

Return e
q
mj

j
,q

ml
l
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Figure 9. Additional validation results for the concept discov-

ery method (Sec. 3.2 in the main paper) for the MobileNetv3

model [26]. For a set of 50 randomly selected ImageNet classes,

we discover concepts in four layers of the model. During infer-

ence, one randomly selected concept at each layer is suppressed

by a factor of ✏.

clusters to be km = 25 in the concept discovery step. How-

ever, as VCCs target the discovery of concepts at potentially

all layers, we select a different pruning protocol [23], where

they prune based on a single minimum value. Instead, we

prune clusters that have less than Y images, via the gener-

alized logistic sigmoid

Y = A+
K �A

(C +Qe−Bt)1/ν
, (9)

where A = �102, K = 115, C = 1, Q = 1, B = 0.0004
and v = 1. Pruning based on a sigmoid shaped function

enables different levels of leniency when considering what

constitutes a concept for each layer. This is crucial as dif-

ferent layers contain a different number of segments from

the top-down segmentation algorithm (Sec. 3.1 in the main

paper).

For the maskSLIC [28] clustering stage, we use a com-

pactness of 0.8 and all other parameters are set to the Scikit-

Image [50] defaults. The Euclidean distance is used for all

clustering steps.

Randomized testing. When applying our ITCAV

method to calculate the strength of connection between two

concepts, we protect against the impact of spurious results

by performing a statistical significance test on all ITCAV

scores. More specifically, instead of simply calculating the

ITCAV score with the target concept images, we calculate

an additional 20 ITCAV scores using random images sam-

pled from Broden [3]. We perform a two-sided t-test of

the ITCAV score based on the 20 random scores. We test

whether the null hypothesis (i.e. a ITCAV score of 0.5) can

be rejected with a p-value of p > 0.05. All ITCAV scores

shown in the main paper and supplement pass this statistical

test, i.e. p  0.05.

ImageNet classes. The 50 ImageNet classes used

for the model and task analysis experiments (Sec. 4.3 in

the main paper) are the following: tow truck, sturgeon,

sax, wool, basketball, whiptail, toy poodle, acorn, crutch,

church, backpack, spaghetti squash, snowmobile, teapot,

ant, chain, gorilla, holster, wreck, ice lolly schipperke, cra-

dle, dowitcher, leopard, oystercatcher, saltshaker, drake,

loupe, spotlight, Newfoundland, bagel, electric fan, ping-

pong ball, streetcar, knot, plate, sea lion, leafhopper, tusker,

punching bag, black widow, traffic light, tricycle, paper

towel, guinea pig, castle, go-kart, platypus, badger and

bicycle-built-for-two.

The 10 ImageNet classes used for the all-layer VCC

analysis experiments (Sec. 4.3 in the main paper) are the

following: tow truck, sturgeon, sax, wool, basketball, whip-

tail, toy poodle, acorn, crutch, church

10. Additional empirical results

10.1. VCC component validation

10.1.1 Segment proposal validation

Table 1 presents additional results to validate our top-down

feature segmentation approach (Sec. 3.1). In particular, we

show results for four additional models. We observe find-

ings consistent with those in the main paper: Our method

produces concepts that increase in size as the information

flows deeper through the model. It is interesting to observe

a similar phenomenon in transformer-based architectures,

i.e. MViT [18] and ViT-b [51]. While the relative concept

size of the baseline, ACE [23], varies less than 2% across

all architectures and layers, the size of concepts produced

by our method can differ up to 20% between architectures

(i.e. comparing VGG16-Ours with ViT-b-Ours) and 40%

between layers. This finding is to be expected as it is un-

likely for all architectures at all layers to capture concepts

of the same size.

10.1.2 Concept validation

Figure 9 presents additional results to validate our layer-

wise concept discovery method (Sec. 3.2 in the main paper)

for the MobileNetv3 [26] model. The results are consistent

with those in the main paper, i.e. the accuracy for the target

class decreases faster when a concept is suppressed com-

pared to a randomly chosen direction. This result implies

that the concepts discovered throughout the model represent

meaningful directions in the latent space.

10.1.3 Interlayer concept weight validation

We now extend the validation of our Interlayer Testing with

Concept Activation Vectors (ITCAV) method (Sec. 3.3 in

the main paper). In particular, we show results for four ad-

ditional models in Fig. 10 and observe findings consistent

with those in the main paper: There is a positive correlation

between the average path strength (APS) and the logit sum



Branching Factor Number of Concepts Edge Weight Ave.

R50 CLIP R50 CLIP R50 CLIP

Layer1 5.484 6.824 10.447 11.085 0.414 0.417

Layer2 4.945 4.141 8.000 7.468 0.554 0.54

Layer3 2.799 2.754 5.106 5.702 0.476 0.563

Layer4 2.915 1.574 2.957 2.383 0.917 0.634

Table 2. VCC metrics for ResNet50 [25] trained on ImageNet [15]

and via contrastive image-language pretraining (CLIP) [42].

(LS) score. These results further suggest that the combina-

tion of ITCAV scores is predictive of whether a concept is

representative of the target class.

10.2. Understanding models

Figure 11 extends the results from Fig. 6 in the main paper

and shows a quantitative analysis for all-layer VCCs on two

additional models: ResNet50 [25] and ViT-b [16]. Con-

sistent with the results from the main paper, we again see

that the branching pattern and number of concepts start at a

higher value and converges, suggesting that many concepts

are shared between classes at early layers while the later

layers capture ImageNet’s foreground-background struc-

ture. We also observe patterns in the ITCAV values and

variances that are consistent with the main paper. The edge

weight values are consistent until the final layer at which

point they increase, denoting the stronger contribution of

the final layers to the output. In terms of the ITCAV vari-

ance, we again see that transformers (ViT-b) have a higher

variance than CNNs (ResNet50) in the last layer, further

suggesting that transformers have greater compositionality

of concepts before the final prediction.

10.3. Understanding tasks

We now explore how VCCs can reveal the effect of the train-

ing task on learned concepts and their connections. In par-

ticular, given the recent advances of image-language train-

ing paradigms, we compare the standard ResNet50 [25]

model trained on ImageNet [15] with ResNet50 trained via

Contrastive Language Image Pretraining (CLIP) [42].

Table 2 compares graph metrics over VCC layers be-

tween the two models at four residual blocks. We observe

small but notable differences between the two models. First,

CLIP contains a higher branching factor and number of con-

cepts in the first layer than ResNet50, suggesting slightly

more concepts are discovered and composed at the begin-

ning of the network. The pattern is reversed at the end of

the models, where CLIP has a slightly lower number of con-

cepts and branching factor than ResNet50. When consider-

ing average edge weight values, we also observe a general

consistency across models apart from the final layer, where

ResNet50 has a much larger average value. This may be

due to ImageNet trained CNNs having less compositional-

ity at the end of the model as we observed both object and

background classes having a large impact on the output in

the main paper (Sec. 4.3).

10.4. Additional VCCs visualizations

10.4.1 Four layer VCCs

We now supplement the analysis from Sec. 4.3 from the

main paper by generating VCCs for the entirety of the five

models analyzed for different classes in the four layer set-

ting. We specifically chose these models and layer settings

as they are the same as in Sec. 4.3 in the main paper. The

models shown are ResNet50 [25] (Fig. 13), VGG16 [48]

(Fig. 14), MobileNetv3 [26] (Fig. 15), MViT [18] (Fig. 16)

and ViT-b [51] (Fig. 17). All models are trained on Ima-

geNet [15]. The layers selected are the same ones as de-

tailed in Sec. 9.

We observe differences in mid and late layer connec-

tion strengths between CNNs and transformers. Similar to

the main paper discussion (Sec. 4.3), CNNs (Figs. 13, 14

and 15) show stronger connections with less variance be-

tween the 4th layer and class logit than the transformers

(Figs. 16 and 17). Additionally, CNNs tend toward concepts

which capture either the entire foreground or background in

later layers. Meanwhile, the transformers produce concept

shapes of varying shapes and sizes, e.g. the VCC for ViT-

b in Fig. 17 contains concepts of both small patches and

the entire images in the final VCC layer and concepts of

varying sizes in the first VCC layer. These findings for the

transformers are consistent with the ability of such models

to form data associations across their input without the lo-

cality constraints that are inherent in convolutional models.

Finegrained dataset VCC. To show how VCCs gener-

alize to other datasets, we generate a VCC for the CUB [52]

finegrained classification dataset, where the goal is to clas-

sify different types of birds. Figure 18 shows a four layer

VCC for the ResNet18 [25] model targeting the class “in-

digo bunting”. We again see interesting concepts being

composed. For example, branches and the color blue occur

in stage1 and stage2, while stage4 bird concepts are com-

posed from branch, background and bird head concepts in

stage3.

All layer VCC. We show an additional all-layer VCC in

Fig. 19 of the VGG16 model [49] targeting recognition of

class “church”. As in the visualization in the main paper, we

visualize VCC subgraphs and observe interesting composi-

tions occurring at different levels of abstraction correspond-

ing at different depths of the model. At early layers (bottom

left), we observe oriented brown patterns and yellow color

composing the concept of brown and yellow orientation.

Middle layers (right) show the concept of ‘church roof with

sky in the background’ being composed of ‘church roof’

and ‘sky’. The final layer concepts (top left) show that both

foreground objects, e.g. churches, and background regions,

e.g. trees or sky, concepts highly influence the final cate-

gory.



Figure 10. Additional validation results of interlayer concept weights. The unnormalized logit sum (LS) scores, main paper (Eq. 8), for the

target class are plotted against the average path strength (APS) scores, main paper (Eq. 7). A positive correlation implies that the ITCAV

edge weights connecting a concept to the class are predictive of the model output having a higher probability for that class.
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Figure 11. Graph metrics of all layer VCCs for two architectures.

Layer number normalized to allow for comparison of models with

different numbers of layers.

11. Application: Diagnosing failure predic-

tions

To further show our VCC’s practical utility, we show an-

other example of model debugging. Figure 12 shows a

‘church’ incorrectly predicted as a ‘vault’ by a ResNet50

model, and the corresponding incorrect VCC (‘vault’, left)

and correct VCC (‘church’, right). As the image is decom-

posed using our top-down segmentation (Sec. 3.1), it is re-

vealed that several segments are closer, in terms of the l2
distance of the pooled segment activations, to concepts in

the ‘vault’ VCC (red outlines) than the ‘church’ VCC (green

outlines). While the model correctly encoded the door as a

‘church’ concept, the regions outside the door are identi-

fied as ‘vault’ concepts from layers two through four, which

may cause the error. We also note the lack of other ‘church’

specific concepts, such as the sky or cylindrical columns.

12. Limitations

We note some limitations of our method. We rely on the

Silhouette method [43] to select the number of clusters (i.e.

segments) during the top-down feature segmentation stage

to automate this step. However, use of a different method

for selecting the number of clusters could yield different

results and therefore different overall VCCs. In practice,

we have found that using the Silhouette method consistently

produces meaningful segments; so, sensitivity to this choice

is not a serious limitation. Another limitation arises is that

we do not provide a method for selecting the set of layers to

analyze. Such a method for automatic layer selection could

reveal further interesting and useful patterns, such as uncov-

ering the set of layers, along with their connections, which

impact the model output most significantly. A direction to

realize such an algorithm could be to construct a large VCC

and subsequently trim the least important nodes and edges

(e.g. based on the average path strength (APS) to the logit,

as defined in Eq. 7 in the main paper).

13. Societal implications

Understanding the decision making processes of deep net-

works is an important and open problem in computer vi-

sion. Given their potential for negative impacts when de-

ployed, various jurisdictions are moving forward with leg-

islation that may curtail certain applications and mandate

interpretable components in deployed systems [14]. VCCs

are a step towards a holistic understanding of how concepts

in deep networks are learned and in the future may provide

a direction to design legally recognized interpretations of

these models.

VCCs may have implications in terms of recognizing

both what and how biases are learned by deep networks.

While the learning of various biases by deep networks is

well documented [37], it is not well understood how these

biases are constructed and learned by the model. For ex-

ample, it is not sufficient to explain a model’s prediction

by saying it uses the background as a feature. It would be

more desirable to explain what concepts are composed in

earlier layers that lead the model to encode the background

feature in the later layers, which we have shown that VCCs

can reveal. Moreover, such information could open up new

directions for model debiasing.

In terms of negative consequences, VCCs (and explain-
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Figure 12. Debugging model failure modes with VCCs. We show an image of a church incorrectly predicted by a ResNet50 as a vault

(middle) as well as the top-down segmentation of the image (Sec. 3.1). We also show the incorrect (left) and correct (right) VCCs.

Following the hierarchy of concepts reveals that the model incorrectly focused heavily on the cement door frame, starting at Layer 2.

able AI in general) may give users a false sense of security

and allow them to deploy models that ultimately do more

harm than good. Furthermore, the contribution of additional

explainable AI methods may contribute to the disagreement

problem [33], i.e. when multiple explanations of a given

model disagree with each other. It is an open research ques-

tion on how to resolve such disagreements, when potentially

dozens of possible explanations for a given model exist.

14. Assets and licensing

Models. We use provided code and trained weights from

the MViT1 and CLIP2 repositories. MViT is licensed under

the Apache 2.0 license3 and CLIP is licensed under the MIT

license4.

Datasets. We use the ImageNet dataset5 which is under the

BSD 3-Clause License6 and the Broden dataset7 which is

under the MIT license8.

1https://github.com/facebookresearch/mvit
2https://github.com/openai/CLIP
3https://github.com/facebookresearch/mvit/blob/

main/LICENSE
4https : / / github . com / openai / CLIP / blob / main /

LICENSE
5https://www.image-net.org/
6https : / / github . com / floydhub / imagenet / blob /

master/LICENSE
7https://github.com/CSAILVision/NetDissect-Lite
8https://github.com/davidbau/quick-netdissect/

blob/master/LICENSE

https://github.com/facebookresearch/mvit
https://github.com/openai/CLIP
https://github.com/facebookresearch/mvit/blob/main/LICENSE
https://github.com/facebookresearch/mvit/blob/main/LICENSE
https://github.com/openai/CLIP/blob/main/LICENSE
https://github.com/openai/CLIP/blob/main/LICENSE
https://www.image-net.org/
https://github.com/floydhub/imagenet/blob/master/LICENSE
https://github.com/floydhub/imagenet/blob/master/LICENSE
https://github.com/CSAILVision/NetDissect-Lite
https://github.com/davidbau/quick-netdissect/blob/master/LICENSE
https://github.com/davidbau/quick-netdissect/blob/master/LICENSE
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Figure 13. A VCC for four layers of a ResNet50 [25] model targeting the class “ant”. Darker lines denote larger concept contributions.
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Figure 14. A VCC for four layers of a VGG16 [49] model targeting the class “church”. Darker lines denote larger concept contributions.



Guinea Pig
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Figure 15. A VCC for four layers of a MobileNetv3 [26] model targeting the class “guinea pig”. Darker lines denote larger concept

contributions.
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Figure 16. A VCC for four layers of a MViT [18] model targeting the class “crutch”. Darker lines denote larger concept contributions.
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Figure 17. A VCC for four layers of a ViT [16] model targeting the class “snowmobile”. Darker lines denote larger concept contributions.

Indigo Bunting
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Figure 18. A VCC for four layers of a ResNet18 [25] model trained on the finegrained CUB [52] dataset, targeting the class “indigo

bunting”. Darker lines denote larger concept contributions.
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Figure 19. An all-layer VCC of the VGG16 network targetting the class “church”. Darker lines denote larger concept contributions.
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