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A. Appendix
A.1. Datasets

RxRx1 [62] is a publicly-available proprietary Cell Paint-
ing dataset with 125,510 images of 4 human cell types un-
der 1,108 different siRNA perturbations across 51 exper-
imental batches. A unique feature of this dataset is that
it is comprised entirely of siRNA perturbations, which are
known to have severe off-target effects silencing hundreds
of genes [36] causing very distinct phenotypes.

RxRx1-2M is a private version of RxRx1 containing
over 1.6 million images across 16 different cell types and
uses the same set of siRNA perturbations in RxRx1 from
additional experimental batches.

RxRx3 [24] is a publicly-available proprietary Cell
Painting dataset with over 2.2 million images of HUVEC
cells each perturbed with one of 17,063 CRISPR knock-
outs (using one of six different guides) or 1,674 compounds
across 180 experimental batches. This is the largest pub-
licly available whole-genome HCS image set. CRISPR is a
much more accurate technique for knocking out genes com-
pare to siRNA and produces subtler phenotypes by targeting
individual genes [4].

RPI-52M (Recursion Phenomics Imageset) is a private
dataset with approximately 52 million proprietary images
spanning 6,638 experimental batches and 40 cell types. This
is a superset of the preceeding three datasets.

RPI-93M is a private dataset with approximately 93 mil-
lion proprietary images spanning over 10,000 experimental
batches and 41 cell types. To our knowledge, this is the
largest HCS dataset collected for model training purposes.
This is a superset of the preceding four datasets.

Train and Validation splits
All of the datasets are split such that model evaluation

is performed on a non-overlapping set of experiments, i.e.
groups of multi-well plates containing replicates of per-
turbations in randomized layouts per plate, to avoid data-
leakage.

A.2. Model hyperparameters

Models trained on RxRx1 and RxRx1-2M were trained for
100 epochs, on RxRx3 for 50 epochs, and on RPI-52M and
RPI-93M for up to 50 epochs, with early stopping depend-
ing on when validation performance plateaued. All models
(except those using AdaBN) use random sampling without
replacement over the full dataset to create training batches.
Readers are encouraged to read [62] for more details on
batch construction for AdaBN models.

A.2.1 Weakly supervised learning

All WSL models were initialized from Image-Net pretrain-
ing weights. For the DenseNet-161-based classifiers, we
searched over different batch sizes, learning rates, and op-
timizers. We empirically found that a batch size of 4,096
with standard SGD+momentum optimization performs best
on the classification task, one-cycle learning rate schedule
with cosine decay and a 10% warm-up, a maximum learn-
ing rate of 0.32768, momentum of 0.9, and weight decay
of 0.00001. For ViT-based classifiers, we used a batch size
of 4,096, AdamW optimizer with a learning rate of at most
1e-3 using a one-cycle learning rate schedule with cosine
decay and a 10% warm-up, �1 = 0.9 and �2 = 0.95, and a
weight decay of 0.05.

All non-AdaBN classifiers used weighted random sam-
pling based on the perturbation labels in the dataset,
whereas AdaBN models used a custom batch sampler to en-
sure that batches were sampled from the same experimental
plate. For DenseNet-161-based classifiers, we used a sub-
batch-size of 16 for GhostBN.

A.2.2 Masked U-nets

MU-Nets trained on RxRx3 used a global batch size of
4,096, while those trained on RPI-52M and RPI-93M used
a global batch size of 16,384. Each was trained using the
AdamW optimizer [47] with �1 = 0.9 and �2 = 0.95,
weight decay of 0.05, maximum learning rate 1e-3, cyclic
cosine learning rate schedule, and no gradient clipping. We
experimented with different mask ratios (25%, 50%, 75%)
and kernel sizes (3, 5). We compared the performance on
the recall of biological relationships, similar to Table 6, for
these values. Changing the mask ratio or kernel size did not
seem to effect the performance.

A.2.3 Masked Autoencoder Vision Transformers

MAE-ViTs on RxRx3 trained with a global batch size of
4,096, while those trained on RPI-52M and RPI-93M used
a global batch size of 16,384. Each used the Lion opti-
mizer [16] with �1 = 0.9 and �2 = 0.95, weight decay
of 0.05, and no gradient clipping (based on the AdamW op-
timizer settings from He et al. [31]). We found that training
dynamics and downstream performance was significantly
better with large batch sizes and the Lion optimizer ver-
sus using the recommended batch size and AdamW settings
presented by Balestriero et al. [3]. All ViT-S and ViT-B en-
coders were trained with a maximum learning rate of 1e-4



and all ViT-L encoders were trained with a maximum learn-
ing rate of 3e-5 (cosine decay schedule), based on initial
experiments and recommended Lion learning rate settings
presented in [16]. All MAE-ViTs were trained with stochas-
tic depth [3], LayerScale [3], flash attention [18], parallel
scaling blocks [19], QK-normalization [19], and no QK-
bias [19]. Stochastic depth was set to 0.1 for ViT-S and ViT-
B, and 0.3 for ViT-L. All models were initialized with ran-
dom weights, as initial experiments found no benefit start-
ing from pre-trained ImageNet weights.

A.3. Training and Inference
We scaled training based on the results of smaller models
trained on smaller datasets [19, 32, 50, 69], as visualized
in Figure 5 (total FLOps is based on Touvron et al. [64]).
Our most computationally intensive model, ViT-L/8+ (us-
ing the loss function described in Eq. 3), was trained for
over 20,000 GPU hours, learning on over 3.5 billion image
crops sampled from RPI-93M.

Models were trained with data-distributed parallel
(DDP) training and PyTorch 2.0 for up to 100 epochs
on up to 256 NVIDIA 80GB A100 GPUs, depending on
the size of the model and dataset. 256 x 256 x 6 im-
age crops were randomly sampled from 2048 x 2048 x 6
images, augmenting with random horizontal and vertical
flips. For each dataset, we use a validation set of center-
cropped images from full experiments unseen during train-
ing. All image crops are preprocessed with channel-wise
self-standardization [62] before being passed into the deep
learning models.

Inference was performed on a large-scale distributed ku-
bernetes T4 GPU cluster. The results in Section 5 are cal-
culated on the gene knockout experiments of RxRx3 [24].
Each well in a biology experiment is loaded as a 2048 x
2048 x 6 int8 tensor. We tile over this image, obtain-
ing 64 unique 256 x 256 x 6 crops. Each crop is fed-
forward through the encoder, and the resultant 64 embed-
dings are averaged to produce a final well-aggregated em-

bedding. Each genetics-only experiment in RxRx3 has 9
plates, and each plate has 1380 wells; therefore, nearly
800,000 samples need to be fed-forward through the en-
coder for each experiment. Given the 175 genetics-only
experiments in RxRx3, this yields roughly 140 million indi-
vidual samples fed-forward through each encoder in order
to obtain genomic representations from the model. Note
that the AdaBN-based weakly supervised models require
careful mini-batch construction during both training and in-
ference, whereas the rest of our models are deterministic in
producing embeddings of individual samples.

A.4. Additional reconstructions
Additional visualizations of the reconstructed masked input
images using MAE ViT-L/8+ on the JUMP-CP dataset, for

both Cell Painting and Brightfield channels, are shown in
Figure 7. Recall that JUMP-CP was not included in any
training set, thus this data is OOD. Nevertheless, the MAE
reconstruction generalizes well to this dataset, especially for
the Cell Painting samples.

A.5. Additional results
Calculation of FLOps. In Figure 8 we include the scal-
ing plots as in Figure 5, for the other three benchmark
databases (CORUM, hu.MAP, and Reactome). Floating
point operations (FLOps) are approximated based on the
FLOp counts presented in Table 1 from Touvron et al. [64],
which presents FLOps for ViT-S/B/L/16 on a 224x224x3
image. We adjust flop counts by a factor of ( 16⇤1614⇤14 )

2 = 1.69
to account for the changed crop size, and then for 8x8 patch-
ing models we multiply by a factor of 16 to account for the
4x more tokens and the quadratic impact this has on the at-
tention head computations. We lastly multiply the FLOps
by the number of image crops seen during training for each
model.

A.6. CellProfiler feature prediction
We tested the ability of two models and model architec-
tures, RxRx1 DenseNet-161 w/ AdaBN (WSL), and RPI-
93M ViT-L/8+ (MAE) to predict CellProfiler (CP) features
using linear regression. Training was performed on one in-
ternal experiment representing 12 plates of 1380 wells each,
for a total of 16,560 wells. Testing was performed with a
different internal experiment of the same size representing
1,160 different CRISPR knock-out perturbations (with 121
control perturbations in common, equaling < 10% reagent
overlap between train and test experiments). 955 CP fea-
tures were extracted over the categories of area-shape, in-
tensity, neighbors, radial-distribution, and texture, and av-
eraged to the well-level. Highly-skewed CP feature distri-
butions were transformed by log scaling (skew > 0.5) or
by squaring (skew < -0.5) to make them more normal then
all features were centered to 0 and scaled to unit variance.
1,024-dimensional embeddings for both models were simi-
larly averaged to the well-level, centered to 0, and scaled to
unit variance. All feature predictors were trained as single-
task linear regressors using scikit-learn’s ElasticNetCV es-
timator class. A grid-search over a small range of L1/L2 ra-
tios (0.1, 0.6, 0.9, 0.95, 0.99) and alphas (auto-determined)
with a 5-fold cross-validation schedule was used. The best-
fit parameters were then used to predict and score the inde-
pendent experiment test set using the coefficient of determi-
nation (Fig. 6, Supp. Fig. 9, Supp. Table 7).

A.7. JUMP-CP benchmarks
The un-aggregated data for Table 4 are presented in Table 8
and Table 9.



Figure 7. Visualizing MAE ViT-L/8+ (trained on RPI-93M) 75% masked reconstructions on randomly selected out-of-domain JUMP-CP
[14] image crops. Rows alternate between Cell Painting and Brightfield images obtained from the same well. Note that the wells in JUMP-
CP were imaged using different assays, channel composition, microscopes, and labs compared to the well images we used for pre-training.

Figure 8. CORUM, hu.MAP, and Reactome recalls for ViTs as a function of training FLOps.



Table 6. Summary of results discussed in Section 5, including additional results for smaller models. Recall of known relationships in top
and bottom 5% of cosine similarities by model, training set, and database (CORUM/hu.MAP/Reactome/StringDB).

Model backbone / Pretraining dataset RxRx1 [62] RxRx3 [24] RPI-52M RPI-93M

WSL

DenseNet-161 .383/.307/.190/.330 .359/.271/.174/.319 – –
DenseNet-161 w/ AdaBN .485/.349/.228/.417 .461/.303/.188/.377 – –
DenseNet-161 w/ AdaBN (1024-dim) .502/.363/.220/.422 .520/.350/.207/.413 – –

SSL models

MU-net-M – .557/.382/.236/.432 – –
MU-net-L – .566/.374/.232/.427 .576/.385/.238/.443 .581/.386/.247/.440
MAE ViT-S/16 – .518/.367/.228/.415 .505/.359/.224/.402 –
MAE ViT-B/16 – .565/.387/.232/.435 540/.373/.234/.416 –
MAE ViT-B/8 – – .601/.404/.251/.459 –
MAE ViT-L/16 – .560/.374/.231/.427 .607/.414/.258/.460 –
MAE ViT-L/8+ – – .605/.424/.267/.474 .622/.443/.267/.484

Table 7. Median R2 (± median absolute deviation) for CellProfiler predictions across feature categories.

Model Backbone AreaShape Intensity Neighbors RadialDistribution Texture

RxRx1 DN161 w/ AdaBN (WSL) 0.401 ±0.127 0.297 ±0.121 0.583 ±0.142 0.484 ±0.127 0.413 ±0.112
RPI-93M ViT-L/8+ (MAE) 0.456 ±0.162 0.737 ±0.120 0.674 ±0.137 0.711 ±0.093 0.705 ±0.133

Figure 9. Single-task linear regression illustrates how an MAE-trained embedding model outperforms a WSL-trained model in predicting
CellProfiler features across all categories.



Table 8. Perturbation retrieval on the JUMP-CP dataset, measured in fraction retrieved.

Model backbone, dataset
Cell type Modality Time-point CA-93M-ViT-L CA-93M-ViT-L-8chans ViTL-Image-net cellprofiler

A549

compound long 1.00 0.99 0.99 0.95
short 0.98 0.99 0.93 0.76

crispr long 0.89 0.95 0.90 0.68
short 0.88 0.97 0.90 0.68

orf long 0.84 0.83 0.71 0.05
short 0.63 0.93 0.78 0.06

U2OS

compound long 0.98 0.99 0.94 0.66
short 0.88 0.97 0.88 0.78

crispr long 0.91 0.96 0.94 0.46
short 0.91 0.98 0.94 0.67

orf long 0.65 0.89 0.75 0.20
short 0.79 0.89 0.90 0.37

Table 9. Siblings retrieval on the JUMP-CP dataset, measured in fraction retrieved. Note that ORF’s do not have siblings.

Model backbone, dataset
Cell type Modality Time-point CA-93M-ViT-L CA-93M-ViT-L-8chans ViTL-Image-net cellprofiler

A549
compound long 0.05 0.04 0.13 0.17

short 0.13 0.04 0.08 0.14

crispr long 0.06 0.01 0.07 0.12
short 0.04 0.01 0.04 0.11

U2OS
compound long 0.12 0.00 0.03 0.25

short 0.06 0.02 0.05 0.04

crispr long 0.03 0.02 0.03 0.18
short 0.03 0.02 0.02 0.07
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