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1. Overview
This supplementary material provides additional con-

text on the details of the paper along with supplemen-
tal results that were omitted due to space constraints.
In addition to this document (supplementary.pdf),
we also provide an HTML webpage of video results
(supplementary.html) and supp_video_source
contains all the videos in the webpage. We encourage the
reader to view the webpage of qualitative results and data
examples, which are best to judge the quality of motion and
compare results.

In §3, we discuss additional details of our data collection
algorithm and evaluate data quality with a user study, while
§5 provides details of our NIFTY model. §6 discusses addi-
tional qualitative results. In §2, we provide additional details
on experiments from the main paper, including our baseline
comparison user study in §2.1 and the behavior of different
metrics. §4 provides supplemental results to further analyze
the performance of our diffusion model and interaction field.
Finally, §7 discusses limitations.

2. Experimental Details
This section provides additional details on the implemen-

tation of our user study and metrics from the main paper in
§4.

2.1. A/B Test User Study

We conduct a user study to qualitatively evaluate the
performance of two methods. We design a study such that,
given a pair of motions, a user must choose one that is
the most realistic. Specifically, we ask the user “Which
motion among the both is more realistic?" when we show
them two videos (each containing a motion generated by
a different method) “LEFT VIDEO" & “RIGHT VIDEO".
Fig. 1 shows the instructions and user interface from the
study. We conduct 3 such studies using hive.ai [1], the
results of which are in Fig 5 of the main paper.
Filtering Unreliable Users. We require users to understand
instructions given in English. User selection for the study is
conditioned on the performance of a qualification test. Users
with an accuracy of ≥ 80% on this test are allowed to take
the study. To ensure continued reliability during the labeling
process we randomly mix the real task data with “obvious"
honeypot data where the labels are objective. We require
users to have a performance of ≥ 89% on these honeypot
tasks. A drop in performance below this results in the user
being disqualified from taking the study further.

2.2. Metrics

Apart from performing the user study described in §2.1
we also evaluate all our models and baselines on several
quantitative metrics. We detail these metrics below (apart
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Figure 1. A/B Testing User Study We use this study to compare the quality of motions generated by different methods by requiring them
to generate human-object interaction motions. On the left, we show the instruction set following which all users are required to pass a
qualification exam to participate in the study. On the right, we show the user interface as visible to users. The users answer the question
"Which motion is more realistic" and are required to choose one between “LEFT VIDEO" or “RIGHT VIDEO".

from the details already described in Sec 4.2 of the main
paper).

Penetration Score. To assess the realism of human motion
when interacting with an object, we calculate the penetration
score during the approach phase. We define the approach
phase as the initial NA motion frames from a sequence of
150 frames (5 sec). Our rationale for selecting NA is that
during the approach phase, there should be minimal penetra-
tion of the human motion into the object geometry. However,
during the interaction, there should be increasing contact
with the object. These contacts typically result in zero or
positive values in the signed distance function (SDF), indi-
cating penetration of points on the object surface into the
human SMPL mesh.

We compute NA for sitting and lifting separately based
on our synthetic dataset. In particular, we determine the first
frame index of motion where object penetration distance
continues to only increase thereafter. We assume that after
this point, the person is actually interacting with the object
and not just approaching it. For sitting, the typical onset
of motion interaction occurs after the initial 117 frames of
approach, based on the median NA. Likewise, lifting has a
15th percentile NA of 124 frames. We use the 15th percentile

instead of the median (148 frames) to make this metric more
meaningful as 148 frames is almost the end of the complete
motion and we wish to evaluate the approach. This difference
between sit and lift action is due to the difference in their
inherent interaction with the object.

For completeness, we also report this performance as a
function of different NA values in Fig. 2 (sit) and Fig. 3
(lift).
Skeleton Distance. This metric uses the anchor poses from
our human-object interaction data to evaluate whether gen-
erated motions faithfully reflect interactions from data. We
compute a sum over the per-joint location error (22 joints in
our case) between the final generated interaction pose and
the nearest neighbor anchor pose from the training dataset
in the joint locations space. We report the average of this
metric across generated motions.

2.3. Distribution of Test Poses

We plot the distribution of distance between the initial
human pose to the object center in meters (X-axis) v.s. the
kernel density (Y-axis). This distribution is corresponding
to the objects poses from the evaluation set. The distance
in meters is well distributed and our method is able handle
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Figure 2. Penetration Score Sitting. We graph the percentage of
motion sequences with a penetration score of less than or equal to
2cm (Y-axis), compared to the number of approach frames, denoted
as NA (X-axis). Our findings reveal that regardless of the value of
NA, NIFTY (green) consistently exhibits a greater proportion of
motion sequences with low penetration scores.
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Figure 3. Penetration Score Lifting. We graph the percentage of
motion sequences with a penetration score of less than or equal to
2cm (Y-axis), compared to the number of approach frames, denoted
as NA (X-axis). Our findings reveal that regardless of the value of
NA, NIFTY (green) consistently exhibits a greater proportion of
motion sequences with low penetration scores.

distances in the range of 0m to 6m which we refer to as being
in the vicinity of the object.

We highlight some examples from our supplemental page
illustrating near and far objects.

Results under supplementary.html >Addtional
Qualitative Results > Sitting
Sit Near. Wooden Chair(4/13), Arm Chair(11/11), Square
Table(8/17), Yogaball(1/11), Stool(4/12)
Sit Far. Wooden Chair(5/13), Arm Chair(2/11), Square
Table(6/17), Yogaball(2/11), Stool(5/12)

Figure 4. Sit Action Pose distribution (Test set) We plot the
distribution distances (X-axis) between the initial human poses
and the object center in meters as kernel density plot. This is a
distribution of object distances for our evaluation set. We see that
most of the distribution mass is concentrated between 0m to 6m
which represents the operating range for our model.

Figure 5. Lift Action Pose distribution (Test set) We plot the
distribution distances (X-axis) between the initial human poses
and the object center in meters as kernel density plot. This is a
distribution of object distances for our evaluation set. We see that
most of the distribution mass is concentrated between 0m to 6m
which represents the operating range for our model.

Results under supplementary.html >Addtional
Qualitative Results > Lifting

Lift Near. Wooden Chair(7/14), Stool (10/15), Square Ta-
ble(14/14), Suitcase (2/14)

Lift Far. Wooden Chair(10/14), Stool (2/15), Square Ta-
ble(2/14), Suitcase (5/14)



2.4. Robustness and Performance

NIFTY uses a fixed N frames for generation. When
motions start far away, motion guidance can fail since such
motions are OOD of our training set. Fig. 6 shows the Skel.
Distance and Foot Skate for different starting distances to
the object. Skel. distance is similar at different distances
(between 0 to 6m), but at farther distances the foot skate
score increases. For large distances, a navigation model
would help.

Figure 6. We plot errors in Skel. Distance and Foot Skate for
start positions at various distances from the object. We see at
far distances (> 4m) the Foot Skate gets worse due the fixed,
N = 150, motion length. Skel. Distance does show any such
trends on distances in 1m-6m as it depends on final interaction.

3. Automated Synthetic Training Data Genera-
tion

All models in the paper train on synthetic human-object
interaction motion data generated using this pipeline. To
evaluate the quality of generated data compared to other
data, in § 3.1 we perform a large scale user-study with 10K
user responses. In § 3.2 we describe the complete details of
data generation including pseudo-code for the algorithm.

3.1. Data Quality User Study

Our synthetic data generation pipeline helps us collect
high-quality motion data corresponding to different inter-
action anchor poses. We show that this generated data is
high-quality by conducting a user study on a five-point Lik-
ert scale as in prior work [10, 11]. Our results show that the
generated synthetic training data is on par with data collected
using a real mocap setup.
User Study Setup. We created a user-study dataset of 2000
videos, consisting of 500 motions from the AMASS subset
of HUMANISE sitting data [13] (i.e. real-world motion cap-
tured data), 500 motions from our data generation pipeline,
500 predicted motions from our NIFTY sitting model, and
500 from cVAE [13] predictions. For each motion, we ren-
dered a video without an object present in the scene to make
the source of the video indistinguishable. All motions had
a random number of frames uniformly sampled from 60 to
120, where the last motion frame always corresponded to

the sitting interaction pose. We only show results on sit-
ting as the HUMNISE [13] does not have lifting interaction
AMASS subset in their data.

We ask the users to rate the video on its realism. Users
are asked to rate on a scale of 1 to 5 corresponding
to “Strongly Disagree", “Disagree", “Neutral", “Agree",
“Strongly Agree". We set up the study on hive.ai [1].
Instructions to the user are shown in Fig. 7.
User Study Results. Results are shown in Fig. 8. As ex-
pected, AMASS has a high realism score of 4.87 since it
is actual mocap data. Training data generated using our
algorithm has an average user rating of 4.39, implying the
quality is comparable motion collected using an expensive
mocap setup. We also report the performance of NIFTY
and cVAE [13] methods on the same study for completeness.
NIFTY achieves a strong score of 4.11 (between “agree” and
“strongly agree”), which is close to score of the Syn. Data.
The cVAE [13] performance remains low at 2.33 (between
“disagree” and “neutral”).
Filtering Unreliable Users. Note that every user is required
to pass a qualification test containing easy examples to label.
User accuracy is computed and users with accuracy > 60%
are admitted. To ensure that we collect valid responses and
that users completely understand the task during the actual
study, they are occasionally tested on “obvious" data called
“honey pots" during the labeling process. To this end, we add
motions with objective “Strongly Agree" labels (motions
from AMASS) and some with "Strongly Disagree" labels
(low-quality motions generated by cVAE). This is common
practice while conducting such a study, and we also do this
for the user study in the main paper as detailed in §2.1.
The honeypot accuracy for this task is set at 82%: drops
in performance below this thresholds removes a user from
continuing the study any further.

3.2. Training Data Synthesis Algorithm

Our generation process revolves around utilizing a pre-
trained motion model, specifically the HuMoR generative
model [8], to produce motion trajectories that end in a
specific anchor pose. However, we train this model on
reverse-time sequences, enabling us to generate reverse-time
sequences that start from the provided anchor seed pose.
Then, when we convert these rollouts into forward motions
(i.e. play them backwards), the final generated pose in the
rollout aligns with the anchor pose by design.

Our full algorithm for generating a single motion tree
is shown in Algorithm 1. This algorithm constructs a tree
of a specified depth, where each node corresponds to a 1
sec motion clip. Each node is connected to several possible
branches to continue the motion (based on a branching factor
B). The algorithm begins by creating a root node starting
at an input anchor pose. It then repeatedly constructs the
tree by generating motion sequences using the RollOut



Figure 7. Likert User Study. We conduct a user study to assess the motion quality in our Synthetic Dataset. On the left, we present the
qualification instructions for participants, allowing only those who perform well to proceed to the actual study. On the right, we display
the user interface used for labeling motions, where users select from five options: “Strongly Agree", “Agree", “Neutral", “Disagree", or
“Strongly Disagree". The results of this study can be found in Fig. 8
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Figure 8. Likert User Study Results. We conduct a study to judge
the realism of sitting motions on a scale of 1-5. Instructions for
this study are available in §3.1. We show that synthetic training
data (Syn. Data) generated using our algorithm Algorithm 1 has
an average rating of 4.39. This is comparable to AMASS motions
which represent quality of real captured data (using a mocap setup).

function and checking their validity using the PruneCheck
function. If a valid motion sequence is obtained, a child node
is created and added to the tree. The process continues until
the desired depth is reached or the tree is fully explored (no
more branches left to explore)

The algorithm maintains a queue of nodes to be processed,
allowing for breadth-first construction of the tree. If a node
reaches the maximum depth, it is skipped to ensure the tree is
constructed as per the specified depth. The algorithm outputs
the resulting tree, which contains valid motion sequences as
paths from the root to the leaf nodes.
RollOut Function. The RollOut function takes an start
pose and utilizes the pre-trained motion model to generate a
short 1 sec (30 frame) motion sequence. It iteratively runs
the motion model until a valid sequence is obtained or a
specified maximum number of attempts is reached. If a valid
sequence is found, it is returned as the generated motion.
PruneCheck Function. The PruneCheck function exam-
ines a given motion sequence to determine its validity. It
algorithmically checks if the motion collides with the object,

has unnatural human poses, if the human is floating in the
air, or intersecting with the floor etc. It returns a boolean
value indicating whether the motion sequence is valid or not.
Implementation. In our implementation, we set B as 6
for the nodes at depths 1 and 2, while B = 2 for nodes at
higher depths. We also set NTries as 20 to secure a good
rollout sequence. We then convert all the motion nodes in
these trees into individual motion sequences for a particular
interaction.

4. Supplemental Results
In this section, we include supplemental analyses to sup-

port the evaluations in the main paper that were not included
due to space constraints. First, we evaluate the effect of
having a parametric vs a non-parametric guidance field in
§4.1. In §4.2, 4.3, and 4.4 we evaluate the impact of hyper-
parameters like the number of samples at inference, number
of anchor poses at training, and a variant of our Object In-
teraction Field that guides a motion sequence instead of just
the final interaction frame. We also evaluate the difference
in performance across different objects.

4.1. Non-Parametric Object Interaction Field

We conducted a comparison between our method and a
variant where we replaced the object interaction field with a
non-parametric field implemented using the nearest neigh-
bor measure. Specifically, during the guidance phase, we
identified the nearest anchor pose of the object from the
training set and used the difference between this pose and
the predicted final pose as the correction. This correction
was then utilized to define our distance field and guide the
diffusion model accordingly.

Tab. 1 presents the comparison between this baseline and
our method. The skeleton distance metric can be sensitive to



Algorithm 1 Tree Generation. Our proposed tree-roll out algorithm using a pre-trained motion-model

1: function ROLLOUT(startPose, N ) ▷ Input: start pose, N defining number of rollout attempts
2: validSequence← False
3: count← 0
4: while not validSequence and count < N do
5: motion← pretrained motion model generate motion using startPose
6: validSequence← PruneCheck(motion)
7: count← count + 1
8: end while
9: if validSequence then

10: return motion
11: else
12: return null
13: end if
14: end function

15: function PRUNECHECK(motionSequence) ▷ Input: motion sequence
16: valid← check if motionSequence is valid
17: return valid
18: end function

19: queue← empty queue
20: rootAnchorPose← input anchor pose
21: root← create root node NULL motion ▷ For the root node there is no past motion (NULL).
22: root.lastPose← root.anchorPose ▷ The anchor pose is the seed for future roll-outs
23: queue.push(root)
24: while queue is not empty do
25: currentNode← queue.pop()
26: if currentNode.depth = MaxDepth then
27: continue
28: end if
29: for child← 1 to B do
30: GMotion← RollOut(currentNode.lastPose,NTries) ▷ Create a RollOut
31: if GMotion ̸= null then ▷ Check if Good RollOut?
32: childNode← create child node with GMotion
33: childNode.lastPose← GMotion last frame ▷ Set the last motion frame for childNode
34: currentNode.children.push(childNode)
35: queue.push(childNode) ▷ Add childNode to queue
36: end if
37: end for
38: end while

outliers (e.g., a few generations that are far from the object),
so we additionally report % Skel. Dist. ≤ 25cm to get a
more robust metric. The results demonstrate that our learning
approach offers a significant improvement of at least 20% in
terms of Skeleton Distance≤ 25 cm, as well as an additional
10% in terms of Contact IoU. The main paper reports results
on the Parametric approach as our primary model.

4.2. Effect of Number of Samples

In the main paper, we generate 10 guided samples from
the diffusion model and use the one with the best guidance
score. We investigate the impact of varying these number of
samples in Tab. 2. We observe that increasing the number of
samples leads to improved performance. Particular improve-
ments occur when transitioning from 1 sample to 5 samples.
Since guidance does not always result in perfect samples,
drawing a diverse set gives better chance for a high-quality



Table 1. Nearest Neighbor Comparison. We investigate the
effect of learning a parametric function for the Interaction field
compared to using the nearest neighbor approach (explained in
§ 4.1). Our results demonstrate that guiding the diffusion model
with our learned field outperforms using a non-parametric field.
Specifically, for the sitting action dataset, our Parametric method
surpasses the Non-Parametric method by 0.09 points in Contact
IoU and achieves an 18% improvement in Skel. Dist ≤ 25cm.
Similar trends are observed in the lift action dataset.

Sitting
Guidance Foot % D2O D2O Skel. % Skel. Contact % Pen.
Objective Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

Non-Parametric 0.44 99.80 0.00 0.31 47.01 0.45 64.67
Parametric 0.47 99.60 0.00 0.54 65.94 0.54 65.40

Lifting
Guidance Foot % D2O D2O Skel. % Skel. Contact % Pen.
Objective Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

Non-Parametric 0.32 71.12 0.07 0.52 29.88 0.11 63.02
Parametric 0.34 77.69 0.05 0.42 61.55 0.17 69.49

output. Note that drawing additional samples can be done
efficiently in parallel.

Table 2. Number of Samples Analysis. We study the impact
of drawing multiple samples and guiding them. Drawing more
samples helps generate better-quality motions.

Sitting
# Samples Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

1 0.66 86.25 7.36 5.72 41.83 0.40 62.59
2 0.56 94.62 4.29 2.36 51.20 0.47 65.47
5 0.47 98.81 0.00 0.67 62.55 0.51 64.72
10 0.47 99.60 0.00 0.54 65.94 0.54 65.40

Lifting
# Samples Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

1 0.36 73.11 4.84 2.21 42.03 0.14 64.58
2 0.35 75.70 0.08 1.17 48.80 0.14 67.37
5 0.34 77.29 0.06 0.59 57.57 0.17 67.53
10 0.34 77.69 0.05 0.42 61.55 0.17 69.49

4.3. Effect of Number of Anchors Poses

We also train our Interaction Field (IF) using subsets of
motion that yield a limited number of anchor poses. Specif-
ically, we train the IF using 10%, 25%, and 50% of the
available seed anchor poses and report results in Tab. 3. It is
worth noting that Contact IoU and Skeleton Dist metrics are
calculated using all anchor poses in the training set. How-
ever, methods trained with only X% of the anchor data will
not be able to generate the complete range of seed poses.
Therefore, when comparing methods trained with different
percentages of seed anchor poses, we primarily assess them
based on other metrics, but Contact IoU and Skeleton Dist
are still included for completeness.

NIFTY’s performance remains stable even with the lim-
ited availability of anchor poses. Looking at Foot Skating,

D2O, and Penetration metrics, there is not a significant de-
cline in performance. The main paper reports results on
100% data for NIFTY.

Table 3. Number of Anchors at Training. We vary the num-
ber anchor poses available for training the Interaction Field. We
see metrics like Foot Skating, D20, and Pen. are relatively sta-
ble as compared to a number of anchors. The evaluation using
Skel.Distance and Contact IoU uses all the anchor poses in the
training dataset and this evaluation hence hurts the methods that
have access to the less anchor poses during training. For this partic-
ular ablation we consider Foot Skating, D2O, and Pen. are primary
metrics for this ablation.

Sitting
% Anchors Foot % D2O D2O % Pen. Skel. % Skel. Contact

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ ≤ 2cm ↑ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑

10% 0.55 95.82 0.00 53.02 1.90 12.35 0.27
25 % 0.54 98.01 0.00 53.86 1.28 28.88 0.34
50 % 0.49 98.21 0.00 59.23 0.96 34.86 0.40
100% 0.47 99.60 0.00 65.40 0.54 65.94 0.54

Lifting
% Anchors Foot % D2O D2O % Pen. Skel. % Skel. Contact

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ ≤ 2cm ↑ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑

10% 0.37 83.27 0.07 50.72 0.98 14.54 0.06
25% 0.37 84.86 0.05 46.24 1.32 22.11 0.07
50% 0.36 78.49 0.06 56.34 1.01 24.90 0.08
100% 0.34 77.69 0.05 69.49 0.42 61.55 0.17

4.4. Effect of Number of Input Frames on Interac-
tion Field

In the main paper, our interaction field only considers the
last interaction pose, denoted as X̃ . However, we want to
investigate the impact of extending the interaction field to
operate on a sequence of frames rather than just the final
interaction frame. To achieve this, we modify our Object In-
teraction Field to process a sequence of frames from N −m
to N , represented as {X̃N−m . . . X̃N}. Using a transformer
encoder, we encode this sequence and obtain a correction
vector, denoted as ∆{ ˜XN−m . . . X̃N}. In Tab. 4, we present
preliminary results using this spatiotemporal configuration.
The results indicate that training such an interaction field is
feasible but requires a more careful tuning of different hyper-
parameters, e.g., the guidance weights. Further investigation
into this matter is left for future research.

4.5. Effect of training Interaction Field in the Local
Human Frame

Our interaction field is object-centric since it takes in a
canonical object point cloud as input. To test this design
choice, we implement the object interaction field in the local
frame of the human requiring it to understand the spatial
positioning of the object w.r.t to the human motion. As
shown in Tab. 5, this leads to a subpar performance across
the board on sit and lift actions.



Table 4. Multiple Input Frames to Interaction Field We show
preliminary results on training an interaction field that considers
multiple frames as input instead of a single frame like in the main
paper. Our results indicate training such a field is feasible the
requires further analysis to understand the effect of different hyper-
parameters.

Sitting
# Input Foot % D2O D2O Skel. % Skel. Contact % Pen.
Frames Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

1 0.47 99.60 0.00 0.54 65.94 0.54 65.40
5 0.66 86.25 7.36 5.72 41.83 0.40 62.59
10 0.56 94.62 4.29 2.36 51.20 0.47 65.47
15 0.47 98.81 0.00 0.67 62.55 0.51 64.72

Lifting
# Input Foot % D2O D2O Skel. % Skel. Contact % Pen.
Frames Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

1 0.34 77.69 0.05 0.42 61.55 0.17 69.49
5 0.35 76.10 0.06 0.37 62.55 0.16 67.28
10 0.34 78.09 0.05 0.46 62.55 0.17 69.64
15 0.34 77.49 0.06 0.36 62.95 0.16 68.64

Table 5. Canonical vs. Local Human Frame for Interaction
Field Training. We show that training an Interaction Field in the
local human motion frame leads to poor performance as compared
to canonical frame.

Sitting
Interaction Foot % D2O D2O Skel. % Skel. Contact % Pen.
Field Frame Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

Local Human 0.36 40.04 0.86 2.62 0.20 0.04 53.73
Canonical 0.47 99.60 0.00 0.54 65.94 0.54 65.40

Lifting
Interaction Foot % D2O D2O Skel. % Skel. Contact % Pen.
Field Frame Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

Local Human 0.28 41.83 1.02 2.44 0.60 0.02 43.33
Canonical 0.34 77.69 0.05 0.42 61.55 0.17 69.49

4.6. Performance Breakdown Per-Object

We analyze if the performance of our method is biased
towards certain objects by computing the metrics for about
100 interaction motion samples per object instance. We
show the results of this in Tab. 6. Results indicate that
the performance of our method is not dependent on the
kind of the object. For instance, in the case of sitting, the
performance for sitting on a “Armchair" vs “Chair" are close.
This demonstrates the flexibility of the NIFTY pipeline to a
diverse set of objects.

4.7. Effect of guidance weight

We evaluate the effect of guidance weight on the perfor-
mance of human object interactions. We observe that with
low guidance weight (e.g. 10.0) the diffusion models does
not satisfy contact requirements as indicated by high “Skel.
Distance" (0.48) and low “Contact IoU" (0.42). When we in-
crease the guidance weight to 100.0 it causes the (diffusion)
model to break leading to a much higher skeleton distance
(2.27 for sitting). This higher guidance weight also leads to

Table 6. Performance on actions across objects. We see that
NIFTY’s performance is stable across object categories and the
framework handles different objects effectively. For instance, the
performance on the Armchair and Chair on sitting action are close
signaling the flexibility of NIFTY pipeline.

Sitting
Object Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

Armchair 0.42 99.05 0.00 0.42 90.48 0.44 56.73
Chair 0.51 100.00 0.00 0.17 84.31 0.60 49.02
Stool 0.50 96.59 0.01 0.21 68.18 0.54 72.94
Table 0.46 100.00 0.00 0.28 55.88 0.50 68.63
Yoga Ball 0.53 100.00 0.00 0.22 73.33 0.58 52.38

Lifting
Object Foot % D2O D2O Skel. % Skel. Contact % Pen.

Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

Chair 0.34 86.82 0.04 0.38 70.54 0.17 59.82
Stool 0.36 77.24 0.06 0.24 65.04 0.13 76.84
Suitcase 0.33 63.85 0.06 0.20 71.54 0.28 65.06
Table 0.29 90.00 0.03 0.64 51.67 0.15 57.41

more foot-skating score (0.5). We show the results of this in
Table Tab. 7.

Table 7. Effect of guidance weight on performance We evaluate
the effect of guidance weight on the performance of human object
interactions. We empirically find that the best performance is
achieved at weight of 20.0 and use this guidance weight to report
results in the main paper. Best performing numbers are in bold.

Sitting
Guidance Foot % D2O D2O Skel. % Skel. Contact % Pen.
Weight Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

10 0.45 99.40 0.00 0.48 31.08 0.42 64.93
20.0 0.46 99.80 0.00 0.31 68.92 0.54 65.07
50.0 0.47 99.40 0.00 0.47 51.59 0.46 65.73
100.0 0.50 96.22 0.00 2.27 43.43 0.42 65.42

Lifting
Guidance Foot % D2O D2O Skel. % Skel. Contact % Pen.
Weight Skating ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ Dist.≤ 25cm ↑ IoU ↑ ≤ 2cm ↑

10.0 0.35 73.11 0.06 0.43 39.04 0.13 62.94
20.0 0.35 78.69 0.06 0.31 63.15 0.18 68.35
50.0 0.35 79.88 0.06 0.49 51.20 0.15 69.08
100.0 0.36 78.29 0.05 0.73 50.40 0.14 71.76

5. Implementation Details
Recovering Motion from τ 0. Our trajectory representation
is over-parameterized and this allows using the model out-
puts in multiple ways. To recover the generated motion we
extract the per-frame joint angles jri for the SMPL model.
We integrate the velocity tvi along the XZ plane to recover
the XZ translation for the root joint and extract the corre-
sponding Y component (upward) from tpi . This strategy
of extracting motion from the output parameterization is
motivated by our use of guidance with the diffusion model,
which only operates on the last frame of a motion sequence.
By integrating velocity predictions over time, applying the
guidance objective at the last frame will still have a strong



effect on earlier frames in the sequence.
Variable Length Input. Our model takes input motion
trajectories with up to 150 frames. For training, we pad
motion sequences of lengths shorter than this with the last
interaction frame from the sequence.
SMPL model. Our SMPL [4] model does not have hand
articulation, so we use the SMPL model with only 22 articu-
lated joints.
Pre-trained Motion Model for Data Generation. We train
the motion model on a subset of the AMASS dataset that
does not contain extreme sporting actions like jumping, danc-
ing, etc. We do this by removing sequences from AMASS
based on the labels from the BABEL dataset [7]. We use the
HuMoR-Qual [8] variant of the model to get high-quality
motions, which uses the joint positions computed through
the SMPL parametric model as input to future roll-out time
steps (as opposed to using its own joint position predictions).
Transfomer Encoder.. We use a transformer encoder imple-
mented using torch.nn.TransformerEncoder from
PyTorch [6]. Our each transformer layer consists of 4 heads
and a latent dim on 512. We have 8 such layers in our
transformer.

6. Results
Motion generation results are best seen as videos on the

webpage. We also include static visualizations here in Fig. 9
and Fig. 10. The webpage also shows visualizations (∼10
motions) from our method for every object in our dataset.
Below we highlight salient differences in qualitative results
and their possible reasons.
Stocastic Scene-Aware Motions (SAMP).. We tried small
variance and motion blending but did not see significant
quality changes. We found it hard to adapt SAMP to our
large diverse dataset (100 × size of SAMP’s data). After
tuning KL/recon weights and other hyper-parameters the
performance was still subpar. Additionally, we had to add
group norm layers (like [8]) to the SAMP model to prevent
gradient explosion

The videos on webpage show SAMP motions are not al-
ways smooth and display flicker. There is often foot-skating
during the approach motions to the object. We hypothesize
our setting is challenging compared to the original SAMP [2]
setting due to the diversity of characters and the final sitting
poses. SAMP uses a pose representation from NSM [9] to
learn an auto-regressive motion model which is specific for
a single character with and trained with few sitting poses.

Research towards an improved representation could po-
tentially lead to better results, along with modeling the full
motion sequence jointly (like in the cVAE baseline). Fur-
thermore, the independent nature of GoalNet and MotionNet
in SAMP [2] sometimes leads to sampling goal poses that
are not well-suited for the current starting pose, which can
lead to heavy penetrations with the object. In contrast, our

Table 8. Quantitative Comparison We compare performance of
NIFTY and DIMOS on All Objects(All), Wooden Chair(WC)
and Arm Chair(AC). In all the settings, NIFTY does better on
interaction pose metrics (D2O, Skel. Dist, Cont. IoU) but not as
well on foot skating(FS) and % Pen.

Method % D2O D2O Skel. Cont. % Pen.
FS ↓ ≤ 2cm ↑ 95th%̃ ↓ Dist. ↓ IoU ↑ ≤ 2cm ↑

A
ll NIFTY 0.47 99.6 0.00 0.54 0.54 65.0

DIMOS 0.04 42.63 0.23 1.39 0.01 87.4

W
C NIFTY 0.50 100.0 0.00 0.16 0.59 52.38

DIMOS 0.02 35.71 0.22 1.39 0.01 76.67

A
C NIFTY 0.41 100.0 0.00 0.14 0.47 62.12

DIMOS 0.11 46.97 0.33 1.80 0.01 93.55

representation easily handles the diversity in characters and
final sitting poses.
cVAE [13], cMDM [12]. The videos on webpage show
that cVAE is a more expressive model than SAMP as it
jointly models complete motion sequences instead of single
framess. Moreover, using a diffusion model MDM instead
of Variational Autoencoder [3] improves the overall motion
quality. cVAE and cMDM both struggle to generalize to
unseen object poses, and have no mechanism to correct for
this at test time.
Comparison to DIMOS [14]. We evaluate the available pre-
trained DIMOS model on sitting motions. In Tab. 8 shows
quantitative performance compared to NIFTY on All objects,
Arm Chair(AC), and Wooden Chair(WC). In a user study,
NIFTY motions are preferred by 77.4% of users (all objects)
and by 82.8% of users (chairs only) compared to DIMOS.
We use pre-trained models from DIMOS since both methods
use the same underlying AMASS mocap dataset to learn
their respective motion models. The weaker performance
from DIMOS primarily stems from the RL policy missing
the final goal pose, while our interaction field ensures the
appropriate termination.

7. Limitations
Our proposed pipeline demonstrates the ability to achieve

human-object interaction results with a diverse sets of objects
while only relying on a limited number of anchor poses. One
of the key factors contributing to the performance of NIFTY
is the utilization of a pretrained motion model [8] trained on
the AMASS repository [5]. Our data generation pipeline has
the capability to generate motions and interpolate between
existing data in this dataset. However, in cases where a
completely novel and extreme seed anchor pose is provided,
such as a headstand, HuMoR would struggle to generate
reasonable and high-quality motion sequences. Developing
more robust motion models which can handle such poses,
would be beneficial.

In its current form NIFTY only works on the specific body

https://nileshkulkarni.github.io/nifty/supplementary.html


SAMP cVAE cMDM NIFTY SAMP cVAE cMDM NIFTY

Figure 9. Comparison Qualitative Motions Sitting. Compared to other baselines, our method (NIFTY) produces more realistic motions.
When examining the motion examples generated by the baselines, we notice that in all cases where a person approaches an object to sit,
either the person completely misses the object or the sitting pose is not compatible with the object. To better evaluate these results, please
refer to the qualitative videos of these motions in the https://nileshkulkarni.github.io/nifty/supplementary.html.

SAMP cVAE cMDM NIFTY SAMP cVAE cMDM NIFTY

Figure 10. Comparison Qualitative Motions Lifting. NIFTY generates more realistic motions as compared to the baseline methods. With
motions generated using the baseline methods, we see that the lifting stance is often taken far from the object. To better evaluate these results,
please refer to the qualitative videos of these motions in the supplementary.html file.

shapes and types, to handle shape variation, the method has
to be trained with additional data, requiring the synthesis of
interaction poses for the new bodies. Optimization leverag-
ing pose similarities should be possible.

Furthermore, during the inference stage, it is necessary to
draw multiple samples from the diffusion model and guide
them. This approach yields significantly better performance
compared to guiding only a single sample. Exploring re-
search directions that can enhance the stability of the guid-
ance process would be valuable in consistently generating

high-quality interaction motions.
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