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In this supplemental document, we present additional detail and experiments in support of the findings in the main manuscript.
Specifically, we provide details on the differentiable rectification module, stereo network architecture, and we discuss further
evaluations of the rotation error, depth quality, and provide additional qualitative results. Finally, we also provide further
qualitative examples of the datasets we use for training and evaluation of the proposed method. We also release the proposed
datasets at https://light.princeton.edu/online-stereo-recification/.
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1. Differentiable Rectification
An essential component in our model is the differentiable rectification module DRectify, which we describe in the following.
Being differentiable, this module enables us to train end-to-end while inferring rectified images from the model’s pose
predictions, which in-turn enables us to employ rectification constraints to the model during training.

To define this operator, we assume two images I1, I2 ∈ RH×W×3 and the relative pose between the sensors as P =
[R|t] ∈ SE(3) and intrinsics K1,K2 ∈ R3×3, and we aim to project I1, I2 onto a common image plane using rectification
rotations R1, R2 resulting in images I1rect , I2rect . We use differentiable implementations from PyTorch3D and Kornia [5, 10]
for conversion between rotation representations such as matrix2euler, euler2matrix, rodrigues2matrix

Estimating Rectification Homographies. We first extract our relative rotation and translation estimate R, t from P and
transform them to half-rotations as defined below,

Reuler = matrix2euler(R)×−0.5, (1)

Rhalf = euler2matrix(Reuler) (2)
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We then half-rotate our translation vector t to obtain,

thalf = Rhalf t (3)

Here, half-rotations are preferred as we can apply equal and opposite rotations to each image resulting in minimal Field-of-
View (FoV) loss as compared to applying a full rotation to only a single image from the stereo pair.

We previously assumed a horizontal baseline, and now define an arbitrary unit vector u ∈ R3×1 along the x-axis of thalf .
Assuming u is our ideal rectified baseline vector, we aim to estimate a rotation that aligns thalf in the direction of u. To do
so we estimate a vector

w = thalf × u (4)

normal to the plane containing thalf , u where w represents a direction vector implicitly capturing the rotation required to
align thalf to u. Next, we convert to matrix representation wR = rodrigues2matrix(w) and compose with Rhalf to obtain
the final rectification rotation homographies.

R1 = wRR
T
half , R2 = wRRhalf , trect = wRthalf (5)

This is followed by constructing the rectification projection matrices P1rect , P2rect ∈ R3×4 and Q ∈ R4×4 which is used to
map disparity to depth.

Rectifying the Images. We now we have the rectification rotations R1, R2, the new projection matrices P1rect , P2rect and
our original intrinsics K1,K2 in hand. To simplify notation, we describe this process for a single pixel but this is vectorized
in DRectify for efficiency and reused for both images. We convert a 2D pixel pold = (u, v, 1) in homogenous coordinates to
the normalized camera coordinates using Prect.

pnorm = (Prect)
−1pold (6)

Next we apply the homography Rrect as follows,

prect = RT
rectpnorm (7)

We then project prect in camera coordinates to pixels using K

pnew = Kprect (8)

Given the location of our new pixel coordinates, we apply the differentiable remap() function from Kornia [5, 8] to assign the
pixel value at pold to pnew.

2. Network Architecture Details
In this section, we provide additional detail on the network architecture of our method. Table 1a lists the architecture of
our feature extractor and feature enhancer. We list our decoder architecture in Table 1b containing the layers and steps
involved to produce a valid rotation prediction from our model. We use this rotation estimate to rectify our images using the
differentiable rectification module described in Section 1. The differentiable rectification is also mentioned in Table 1a, this
step corresponds to rectifying the features to an initial rotation estimates as described in the main paper.

3. Network Architecture Ablations
Table 2 evaluates the proposed model in the absence of key components from the Network Architecture (Figure 2 of the
main paper). The experiments validate that the Feature enhancement (Figure 2(b) of main paper) play a significant role in
the performance, as does Feature Rectification (rectifying features to identity rotation matrix as an initial step). We also see
a drop in metrics in the absence of the Cost Volume, which replaces the cost volume and the decoder (Figure 2(c) of main
paper) with aggregation (concatenation) of image features followed by a series of 2D Convolutions and Pooling operations
before estimating rotation. We also observe poor performance when trained on lower resolution images (256x256 for main
model and 128x128 for flow estimation), while gaining 60% speedup in inference time. We include w/o Optical Flow and
the Proposed Model metrics from Table 2(c) in the main paper, for reference.



Layer # Layer Description Output Shape
CNN FEATURE EXTRACTOR

1 Residual Block-1
Conv2d

64× 256× 512InstanceNorm
Skip Connection ⊕ ReLU

2 Residual Block-2
Conv2d

96× 128× 256InstanceNorm
Skip Connection ⊕ ReLU

3 Residual Block-3
Conv2d

128× 64× 128InstanceNorm
Skip Connection ⊕ ReLU

- Differentiable Rectification 128× 64× 256

TRANSFORMER FEATURE ENHANCER

1 Positional Encoding 128× 64× 256

2 Transformer Block-1
Feed forward Network

128× 8192Self-Attention Block
Cross-Attention Block
Feed forward Network

3 Transformer Block-2
Feed forward Network

128× 8192Self-Attention Block
Cross-Attention Block
Feed forward Network

4 Transformer Block-3
Feed forward Network

128× 8192Self-Attention Block
Cross-Attention Block
Feed forward Network

5 Transformer Block-4
Feed forward Network

128× 8192Self-Attention Block
Cross-Attention Block
Feed forward Network

6 Transformer Block-5
Feed forward Network

128× 8192Self-Attention Block
Cross-Attention Block
Feed forward Network

7 Transformer Block-6
Feed forward Network

128× 8192Self-Attention Block
Cross-Attention Block
Feed forward Network

(a)

Layer # Layer Description Output Shape
DECODER

- Correlation Volume 64× 128× 64× 128

1 Decoder Block-1 Conv3d
32× 64× 64× 128BatchNorm3D

2 Decoder Block-2 Conv3d
16× 64× 64× 128BatchNorm3D

3 Decoder Block-3 Conv3d
8× 64× 64× 128BatchNorm3D

4 Decoder Block-4 Conv3d
4× 64× 64× 128BatchNorm3D

5 Decoder Block-5 Conv3d
2× 64× 64× 128BatchNorm3D

6 Decoder Block-6
Conv3d

1× 64× 64× 128BatchNorm3D
ReLU

- Max 1× 64× 128
- Flatten 1× 8192

7 Linear
1× 6Tanh

- Gram-Schmidt 3× 3

(b)

Table 1. (a) Architecture of the feature extractor and feature enhancement blocks. Here Differentiable Rectification corresponds to the
module described in Section 1. (b) Architecture for decoder module after the correlation volume is computed using the enhanced features
from Table 1a.

Ablation MAE
SIFT
Offset
(pixels)

SuperGlue
Offset
(pixels)

Vertical
Flow

(pixels)

Inference
Time
(msec)

w/o Feature Enhancement 0.15 8.47 6.88 6.82 41
w/o Feature Rectification 0.14 8.32 6.88 6.75 79
w/o Optical Flow 0.13 7.68 5.53 5.67 86
w/o Cost Volume 0.06 3.92 0.98 1.33 44
Proposed Model 0.05 3.55 0.64 1.003 86
w/ Reduced Image Resolution 0.08 3.98 1.07 1.39 36

Table 2. We provide additional ablation experiments on the Carla dataset. The experimennts validate the need for key components in the
network architecture.



4. Additional Rotation Errors Evaluations
Next, we provide additional evaluations that evaluate the rotation error as a metric typically evaluated to assess camera pose
estimation approaches. Table 3 reports the errors in rotation measured in degrees along x (RX ), y (Ry) and z (Rz) axes of
rotation. These errors are computed as the mean absolute error between the ground truth relative rotation and the predicted
relative rotation, after conversion to axis angle representation. On the real datasets, Semi-Truck Highway and KITTI [7], our
method consistently outperforms other methods. We attribute this to our method being directly trained to reduce the rotation
error. We report these metrics here since it is standard practice in general camera pose estimation approaches. On the Carla
dataset, featuring extreme pose variations, still performs best overall while other pose estimation methods are in a competitive
range.

5. Additional Stereo Depth Evaluations
In this section, we provide further evaluation of the effect of different rectification methods on downstream stereo depth
estimation, in the presence of pose variation and de-calibration. We used two publicly available off-the-shelf stereo models
(HITNet [14] and DLNR [15]) for this evaluation. Given left and right input images (IL and IR), we first retrieve the depth
map using ground-truth calibration in the following steps. We rectify IL and IR using ground-truth calibration parameters
and get I∗Rect

L and I∗Rect
R . Then, we pass I∗Rect

L and I∗Rect
R to the stereo model and compute the depth map Y ∗Rect. We

finally unrectify the depth map, yielding the reference depth Y ∗ with ground truth calibration. For a given calibration method
M , we then estimate depth by rectifying IL and IR using calibration parameters of M and get IMRect

L and IMRect
R . We pass

IMRect
L and IMRect

R to the identical stereo model from above and compute the depth map Y MRect, which we also unrectify
to yield the estimated depth map Y M for method M .

Given the predicted depth value of a pixel yi from Y M and the depth value of a pixel y∗i on Y ∗ with ground truth
calibration, we evaluate the following metrics:

• Mean Absolute Error (MAE):
1

N

∑
i

|y∗i − yi| (9)

• Root Mean Squared Error (RMSE): √
1

N

∑
i

(y∗i − yi)2 (10)

• Scale Invariant Logarithmic error (SILog):

1

N

∑
i

d2i −
1

N2

(∑
i

di

)2

, (11)

where di = log yi − log y∗i .
• Absolute Relative Error percent (AbsRel):

1

N

∣∣∣∣y∗i − yi
y∗i

∣∣∣∣ ∗ 100 (12)

• Accuracy with threshold thr: percentage (%) of yi s.t.

max

(
y∗i
yi

,
yi
y∗i

)
= δ < thr, (13)

where thr ∈ {1.25, 1.252, 1.253}.

We evaluate the metrics in binned [0, 80]m, [0−100]m, [0−200]m, and [0−300]m depth ranges. The proposed method con-
sistently outperforms existing methods on the Semi-Truck Highway and KITTI [7] (Tables 5 and 6) and compares favorably
on the CARLA dataset (Table 7).



Figure 1. Semi-Truck Highway Data Distribution. (Left) Summarises the distribution of data samples in Highway Scenes v/s Urban
Scenes. (Right) Summarises the distribution of data based on the time of day, to capture the variation in natural light throughout the dataset.

6. Additional Dataset Details
We include additional details and examples from our two proposed datasets, the Semi-Truck Highway dataset in Fig. 2, and
our custom CARLA dataset in Fig. 3. The examples highlight the diversity in scenes, lighting and environment that were
described in the main manuscript.

The Semi-Truck Highway captures wide-baseline calibration deterioration naturally in a long-haul trucking operation
setting. The dataset was captured with four front-facing 8MP 20-bit RCCB HDR sensors (AR0820) with 30 degrees hori-
zontal field of view lenses. The cameras were mounted on a single rigid bar placed on a truck at a height of approximately
3m from the ground, and the cameras were distributed over a 2m baseline with the baseline varying between 0.6m and 0.7m.
The mounting plate for the cameras were custom-made to ensure that they are attached rigidly and there are no significant
orientation differences between each pair. Offline calibration was performed before and after each capture drive to ensure
consistency in the offline calibration parameters. Calibration was performed in two stages: lab-based offline intrinsic param-
eter estimation and on-site calibration using charts with clearly detectable patterns. Calibration captures were done while the
vehicle was static, either in neutral or the engine turned off, to reduce any artifacts due to camera vibration and rolling-shutter
effects. A total of 52 hours of data were collected in urban areas and highways under varying illumination conditions. Fig. 1
shows the scene and illumination distribution. Here, we include the distribution of data based on the scene (Highway, Urban)
and the time of day which we split into (noon, dusk and night). We provide additional metrics on the Semi-Truck Highway
dataset based on the time of day evaluations in Table 4. We provide a breakdown of the metrics based on time of day on
our proposed method and our baseline methods, as seen in from the table our method performs well in challenging low light
scenarios (Dusk and Night) with comparable metrics to daytime scenes (Noon).

Our custom CARLA dataset was created to maximize the diversity of poses. While our real data were captured across
multiple capture campaigns to maximize the scene and illumination diversity, pose diversity is still hard to achieve in practice.
To this end, we used CARLA to synthetically generate different pose variations while having a setup close to the Truck setup.
For the synthetic dataset we used the same 8MP resolution cameras with a 30 degrees field of view but in RGB format. The
cameras are placed at a height of 2.5m from the ground and a baseline of 0.8m between each pair. For the scenes, we used
Town01 to Town06 with random waypoints. For each waypoint, the cameras poses are randomly perturbed before rendering
the scene.

7. Additional Qualitative Images
To provide further qualitative insight into the effectiveness of our proposed method, we add additional qualitative images
from all three datasets we evaluate on. We overlay the left-right rectified stereo pairs and include the corresponding stereo
depth inferred by HITNet [14] on these images. For KITTI [7], we see our model compares favorably as reported in Fig. 4.
Our evaluation on the semi-truck highway datasets highlights the effects of wide baseline calibration deterioration, see Fig. 5.
The results on CARLA dataset show our model ability to handle large pose variations while also displaying the challenge this
dataset proposes when comparing the results from the other methods, see Fig. 6. The proposed method handles significant



Dataset Method
Rx

(degrees)
Ry

(degrees)
Rz

(degrees)

(a) Semi-Truck Highway

SIFT + LO-RANSAC [3, 9] 6.64 5.37 10.15
SuperGlue + MAGSAC [1, 12] 0.79 0.46 0.18
LOFTR + MAGSAC [1, 13] 0.69 3.05 0.50
RPNet [6] 0.62 1.16 0.49
DirectionNet [2] 0.37 3.6 0.47
ViTPose [11] 0.15 0.16 0.11
Ours (w/o OF) 0.03 0.05 0.04
Ours (w/ OF) 0.02 0.02 0.01

(b) KITTI[7]

SIFT + LO-RANSAC [3, 9] 2.18 1.51 2.66
SuperGlue + MAGSAC [1, 12] 0.19 0.11 0.03
LOFTR + MAGSAC [1, 13] 0.10 0.10 0.02
RPNet [6] 0.08 0.28 0.03
DirectionNet [2] 0.08 0.19 0.12
ViTPose [11] 0.05 0.09 0.06
Ours (w/o OF) 0.02 0.05 0.004
Ours (w/ OF) 0.03 0.003 0.008

(c) CARLA

SIFT + LO-RANSAC [3, 9] 3.32 1.80 2.85
SuperGlue + MAGSAC [1, 12] 0.29 0.11 0.03
LOFTR + MAGSAC [1, 13] 0.45 0.14 0.14
RPNet [6] 0.55 0.66 0.66
DirectionNet [2] 1.10 0.80 0.76
ViTPose [11] 0.12 0.16 0.29
Ours (w/o OF) 0.55 0.53 0.52
Ours (w/ OF) 0.03 0.23 0.11

Table 3. Quantitative Evaluation on the (a) Semi-Truck Highway, (b) KITTI [7] and (c) Carla Datasets. Included in this table are the
Rotation errors along all three axes of rotation. We compute the MAE between the predicted rotation estimates and the ground truth
rotation. Rx, Ry and Rz correspond to rotations about x, y, and z-axis respectively.

pose variations in a diverse set of scenarios and lighting conditions, as also validated by the quantitative evaluations in Section
4 and Section 5.
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Dataset Method MAE
SIFT
Offset
(pixels)

SuperGlue
Offset
(pixels)

Vertical
Flow

(pixels)

Unrectified 0.26 8.00 2.56 4.52
GT (Offline Calibration) - 2.93 0.79 0.69
SIFT + LO-RANSAC [3, 9] 0.32 25.68 26.50 17.74
SuperGlue + MAGSAC [1, 12] 0.16 13.73 11.01 11.35

(a) Noon LOFTR + MAGSAC [1, 13] 0.17 14.12 11.34 11.49
RPNet [6] 0.20 11.15 8.39 8.66
DirectionNet [2] 0.33 7.68 5.36 5.76
ViTPose [11] 0.07 4.39 2.29 2.80
Ours 0.018 2.70 0.59 1.09
Unrectified 0.21 7.64 2.23 4.89
GT (Offline Calibration) - 3.17 0.76 0.71
SIFT + LO-RANSAC [3, 9] 0.30 28.68 34.56 18.32
SuperGlue + MAGSAC [1, 12] 0.13 16.31 12.82 12.94

(b) Dusk LOFTR + MAGSAC [1, 13] 0.13 16.6 13.2 12.95
RPNet [6] 0.17 12.88 9.52 9.79
DirectionNet [2] 0.25 8.78 6.13 6.53
ViTPose [11] 0.05 4.47 2.07 2.63
Ours 0.013 2.88 0.56 1.13
Unrectified 0.15 14.11 9.10 9.83
GT (Offline Calibration) - 2.70 0.71 0.41
SIFT + LO-RANSAC [3, 9] 0.16 22.17 20.76 17.39
SuperGlue + MAGSAC [1, 12] 0.12 17.47 13.97 14.22

(c) Night LOFTR + MAGSAC [1, 13] 0.11 19.42 15.74 16.32
RPNet [6] 0.12 15.89 12.61 12.59
DirectionNet [2] 0.16 11.14 9.20 9.82
ViTPose [11] 0.07 5.71 4.0 4.03
Ours 0.010 2.64 0.68 0.77

Table 4. Quantitative Evaluation on the (a) Noon, (b) Dusk and (c) Night scenes from the Semi-Truck Highway Dataset. Evaluation on
unrectified images and ground truth images are also included.



Figure 2. Semi-Truck Highway Samples These are scenes picked at random from our proposed real dataset. As seen the scenes are
predominantly highway and urban coupled with different lighting conditions based on the time of day.



Figure 3. Carla Dataset Samples These are scenes picked at random from our proposed CARLA[4] simulated dataset. As seen the
scenes are more urban while the lighting variations are more significant. Additionally we also have similar scenes with different lighting
conditions in this dataset.



SuperGlue + MAGSAC [1, 12] RPNet [6] LOFTR + MAGSAC [1, 13] ViTPose [11] Proposed GT

Figure 4. KITTI [7] Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents a different
rectification method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical disparity. Every
row is accompanied by the corresponding depth inferred from HITNet [14].



SuperGlue + MAGSAC [1, 12] RPNet [6] LOFTR + MAGSAC [1, 13] ViTPose [11] Proposed GT

Figure 5. Semi-Truck Highway Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents
a different rectification method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical
disparity. Every row is accompanied by the corresponding depth inferred from HITNet [14].



SuperGlue + MAGSAC [1, 12] RPNet [6] LOFTR + MAGSAC [1, 13] ViTPose [11] Proposed GT

Figure 6. CARLA Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents a different
rectification method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical disparity. Every
row is accompanied by the corresponding depth inferred from HITNet [14].



Stereo Model Depth Range Method
lower is better higher is better

MAE RMSE SILog absrel d<1.25 d<1.252 d<1.253

DLNR [15]

[0, 80]m

DirectionNet [2] 22.81 27.57 42.33 61.98 5.98 13.58 23.69
LOFTR + MAGSAC [1, 13] 20.70 25.75 49.53 54.87 20.82 31.61 39.99
RPNet [6] 21.79 26.86 52.79 58.81 11.80 24.02 34.72
SIFT + LO-RANSAC [3, 9] 23.99 28.74 59.35 64.91 10.56 19.79 27.89
SuperGlue + MAGSAC [1, 12] 20.97 26.05 50.26 55.70 19.73 30.46 38.95
ViTPose [11] 10.44 15.31 34.50 26.64 62.93 72.14 77.85
Proposed 3.19 5.96 10.42 10.05 91.98 95.29 97.15

[0, 100]m

DirectionNet [2] 26.52 32.98 46.21 63.47 5.60 12.72 22.17
LOFTR + MAGSAC [1, 13] 24.31 31.06 53.48 56.70 19.49 29.83 37.94
RPNet [6] 25.43 32.20 56.40 60.47 10.97 22.37 32.45
SIFT + LO-RANSAC [3, 9] 27.79 34.16 62.81 66.37 9.86 18.53 26.23
SuperGlue + MAGSAC [1, 12] 24.61 31.41 54.23 57.57 18.49 28.71 36.87
ViTPose [11] 13.03 19.62 38.49 28.91 60.07 69.58 75.58
Proposed 4.27 8.07 12.03 12.12 90.94 94.60 96.54

[0, 200]m

DirectionNet [2] 39.91 53.79 57.19 66.86 4.84 10.95 19.09
LOFTR + MAGSAC [1, 13] 37.33 51.43 64.13 60.84 16.92 26.12 33.50
RPNet [6] 38.58 52.77 66.49 64.26 9.34 19.02 27.76
SIFT + LO-RANSAC [3, 9] 41.34 54.74 72.22 69.78 8.45 15.95 22.71
SuperGlue + MAGSAC [1, 12] 37.72 51.88 64.85 61.73 16.05 25.10 32.47
ViTPose [11] 23.24 37.34 49.41 34.79 53.42 63.28 69.77
Proposed 8.26 16.63 16.21 17.65 88.34 93.16 95.50

[0, 300]m

DirectionNet [2] 47.28 66.22 61.68 67.91 4.64 10.49 18.28
LOFTR + MAGSAC [1, 13] 44.57 63.72 68.39 62.13 16.25 25.11 32.27
RPNet [6] 45.90 65.19 70.68 65.44 8.92 18.16 26.52
SIFT + LO-RANSAC [3, 9] 48.70 66.93 76.05 70.86 8.07 15.28 21.78
SuperGlue + MAGSAC [1, 12] 44.99 64.18 69.12 62.97 15.42 24.15 31.27
ViTPose [11] 29.34 48.72 53.83 36.92 51.41 61.23 67.78
Proposed 10.67 22.38 17.81 19.78 87.30 92.62 95.16

HITNet [14]

[0, 80]m

DirectionNet [2] 21.86 26.83 48.91 63.74 6.80 15.24 26.00
LOFTR + MAGSAC [1, 13] 18.31 23.70 50.62 50.27 25.80 39.03 48.61
RPNet [6] 19.78 25.36 58.72 55.66 15.69 30.73 42.99
SIFT + LO-RANSAC [3, 9] 22.79 27.75 66.73 64.86 12.38 23.85 34.53
SuperGlue + MAGSAC [1, 12] 18.53 23.96 51.55 50.84 24.60 37.86 47.68
ViTPose [11] 7.54 11.82 27.96 19.87 71.98 82.70 87.76
Proposed 1.71 3.94 7.82 5.01 96.27 98.01 98.86

[0, 100]m

DirectionNet [2] 25.19 32.01 53.50 65.61 6.47 14.48 24.73
LOFTR + MAGSAC [1, 13] 21.50 28.77 55.55 52.36 24.48 37.28 46.65
RPNet [6] 23.10 30.58 63.64 57.80 14.80 29.06 40.84
SIFT + LO-RANSAC [3, 9] 26.31 33.03 71.40 66.88 11.72 22.60 32.86
SuperGlue + MAGSAC [1, 12] 21.74 29.06 56.50 52.91 23.35 36.15 45.70
ViTPose [11] 9.50 15.43 31.70 21.65 69.56 80.75 86.10
Proposed 2.38 5.54 9.04 6.09 95.61 97.58 98.52

[0, 200]m

DirectionNet [2] 37.95 54.05 66.91 69.98 5.75 12.87 21.96
LOFTR + MAGSAC [1, 13] 33.94 50.62 69.59 57.82 21.66 33.32 42.06
RPNet [6] 35.75 52.68 77.57 63.18 12.95 25.52 36.05
SIFT + LO-RANSAC [3, 9] 39.51 55.10 84.43 71.55 10.33 20.02 29.26
SuperGlue + MAGSAC [1, 12] 34.20 50.92 70.52 58.20 20.69 32.28 41.16
ViTPose [11] 18.05 32.62 43.18 27.00 63.42 75.36 81.44
Proposed 6.02 14.56 13.32 10.66 93.54 96.14 97.41

[0, 300]m

DirectionNet [2] 47.22 71.78 73.97 71.85 5.46 12.21 20.84
LOFTR + MAGSAC [1, 13] 43.19 68.59 76.80 60.62 20.60 31.73 40.15
RPNet [6] 44.88 70.37 84.58 65.49 12.26 24.18 34.23
SIFT + LO-RANSAC [3, 9] 49.22 73.17 91.17 73.76 9.79 19.03 27.86
SuperGlue + MAGSAC [1, 12] 43.48 68.87 77.74 60.85 19.68 30.74 39.27
ViTPose [11] 25.39 48.54 49.56 30.19 60.74 72.69 79.06
Proposed 9.53 24.04 15.99 14.20 92.53 95.47 96.83

Table 5. Stereo depth evaluation on Semi-Truck Highway dataset using DLNR-Middlebury and HITNet stereo models.



Stereo Model Depth Range Method
lower is better higher is better

MAE RMSE SILog absrel d<1.25 d<1.252 d<1.253

DLNR [15]

[0, 80]m

DirectionNet [2] 5.12 9.11 27.80 18.61 75.58 88.10 92.23
LOFTR + MAGSAC [1, 13] 3.34 6.10 17.50 12.13 87.02 92.19 94.11
RPNet [6] 5.86 10.00 27.73 21.85 70.67 89.10 94.18
SIFT + LO-RANSAC [3, 9] 15.78 20.84 64.55 74.01 4.86 9.56 14.11
SuperGlue + MAGSAC [1, 12] 5.41 9.02 28.76 21.03 72.24 79.03 82.45
ViTPose [11] 2.10 4.22 10.01 7.55 95.21 98.39 99.30
Proposed 0.97 2.59 8.94 3.50 96.88 98.91 99.53

[0, 100]m

DirectionNet [2] 5.89 10.88 29.21 19.45 74.41 87.10 91.65
LOFTR + MAGSAC [1, 13] 3.81 7.21 18.30 12.53 86.03 91.87 93.89
RPNet [6] 6.74 12.04 29.41 22.87 69.46 87.67 93.51
SIFT + LO-RANSAC [3, 9] 16.93 23.07 66.15 74.39 4.77 9.39 13.86
SuperGlue + MAGSAC [1, 12] 6.05 10.45 29.87 21.48 71.46 78.52 82.05
ViTPose [11] 2.43 5.10 10.60 7.89 94.43 98.20 99.20
Proposed 1.15 3.10 9.31 3.66 96.63 98.79 99.47

[0, 200]m

DirectionNet [2] 8.14 17.35 32.21 21.51 72.72 85.19 90.19
LOFTR + MAGSAC [1, 13] 4.94 10.52 20.04 13.20 84.66 91.10 93.48
RPNet [6] 9.51 20.01 33.13 25.53 67.72 85.27 91.20
SIFT + LO-RANSAC [3, 9] 19.23 28.45 69.11 74.99 4.65 9.17 13.55
SuperGlue + MAGSAC [1, 12] 7.47 14.27 31.98 22.15 70.41 77.70 81.43
ViTPose [11] 3.33 8.00 11.98 8.55 92.94 97.68 98.93
Proposed 1.60 4.70 9.98 3.96 96.22 98.57 99.34

[0, 300]m

DirectionNet [2] 9.44 22.09 33.49 22.47 72.42 84.78 89.66
LOFTR + MAGSAC [1, 13] 5.47 12.42 20.64 13.40 84.39 90.84 93.30
RPNet [6] 11.11 25.93 34.77 26.77 67.44 84.85 90.60
SIFT + LO-RANSAC [3, 9] 20.13 31.06 70.03 75.17 4.63 9.12 13.49
SuperGlue + MAGSAC [1, 12] 8.11 16.36 32.71 22.32 70.21 77.49 81.24
ViTPose [11] 3.79 9.78 12.50 8.80 92.63 97.42 98.80
Proposed 1.82 5.66 10.17 4.05 96.09 98.51 99.30

HITNet [14]

[0, 80]m

DirectionNet [2] 4.58 8.21 17.65 16.84 78.86 93.92 97.69
LOFTR + MAGSAC [1, 13] 2.61 5.02 13.72 9.72 91.09 95.77 97.14
RPNet [6] 5.94 9.95 16.05 22.42 69.20 92.84 99.12
SIFT + LO-RANSAC [3, 9] 15.84 21.24 80.87 78.53 6.50 12.74 18.48
SuperGlue + MAGSAC [1, 12] 4.16 7.54 23.79 16.19 78.18 86.37 89.91
ViTPose [11] 1.78 3.59 8.40 6.45 97.70 99.19 99.61
Proposed 0.66 2.21 7.47 2.70 98.63 99.41 99.70

[0, 100]m

DirectionNet [2] 5.60 10.67 19.55 18.25 77.17 92.25 96.97
LOFTR + MAGSAC [1, 13] 3.07 6.28 14.70 10.14 89.90 95.44 96.96
RPNet [6] 7.35 13.15 18.59 24.47 67.37 89.99 98.00
SIFT + LO-RANSAC [3, 9] 17.12 23.79 83.16 79.59 6.38 12.49 18.15
SuperGlue + MAGSAC [1, 12] 4.78 9.11 25.22 16.69 77.24 85.75 89.49
ViTPose [11] 2.12 4.60 9.05 6.80 96.67 99.07 99.56
Proposed 0.81 2.82 7.92 2.87 98.46 99.34 99.67

[0, 200]m

DirectionNet [2] 10.56 24.85 26.92 23.79 74.22 88.33 93.30
LOFTR + MAGSAC [1, 13] 4.83 12.08 18.04 11.25 87.70 93.97 96.18
RPNet [6] 14.09 31.19 28.09 32.54 64.51 85.18 91.79
SIFT + LO-RANSAC [3, 9] 21.05 33.29 88.71 83.34 6.15 12.06 17.54
SuperGlue + MAGSAC [1, 12] 6.96 15.72 29.39 17.94 75.49 84.18 88.24
ViTPose [11] 3.50 9.62 11.57 7.82 94.18 98.24 99.19
Proposed 1.54 6.22 9.60 3.49 97.83 99.01 99.47

[0, 300]m

DirectionNet [2] 15.19 39.74 31.83 28.03 73.42 87.25 91.84
LOFTR + MAGSAC [1, 13] 6.46 18.01 20.37 11.86 86.98 93.23 95.54
RPNet [6] 20.48 50.30 34.56 38.90 63.78 84.04 90.12
SIFT + LO-RANSAC [3, 9] 23.96 41.75 91.36 86.18 6.08 11.92 17.33
SuperGlue + MAGSAC [1, 12] 8.87 22.19 31.88 18.61 74.90 83.52 87.59
ViTPose [11] 4.76 14.77 13.43 8.42 93.36 97.49 98.75
Proposed 2.37 9.90 10.81 3.93 97.32 98.75 99.30

Table 6. Stereo depth evaluation on KITTI dataset using DLNR-Middlebury and HITNet stereo models.



Stereo Model Depth Range Method
lower is better higher is better

MAE RMSE SILog absrel d<1.25 d<1.252 d<1.253

DLNR [15]

[0, 80]m

DirectionNet [2] 18.19 24.41 61.00 57.79 15.15 26.98 36.52
LOFTR + MAGSAC [1, 13] 8.98 13.85 35.24 26.41 62.29 69.60 74.44
RPNet [6] 16.08 22.44 61.23 49.54 24.01 39.87 50.73
SIFT + LO-RANSAC [3, 9] 20.97 26.74 60.47 67.25 9.10 16.80 23.81
SuperGlue + MAGSAC [1, 12] 10.37 15.65 41.00 30.81 55.93 64.58 70.18
ViTPose [11] 5.91 10.43 27.90 16.20 77.74 86.42 90.08
Proposed 4.06 6.95 12.78 11.40 86.48 96.55 98.75

[0, 100]m

DirectionNet [2] 22.82 31.75 66.42 59.88 14.00 24.99 33.90
LOFTR + MAGSAC [1, 13] 11.89 18.85 39.83 28.30 60.28 67.47 72.26
RPNet [6] 20.52 29.58 67.22 51.96 22.25 37.06 47.32
SIFT + LO-RANSAC [3, 9] 25.86 34.25 65.31 68.96 8.41 15.51 22.03
SuperGlue + MAGSAC [1, 12] 13.61 21.12 45.78 32.89 53.50 62.20 67.67
ViTPose [11] 8.25 14.82 32.68 18.08 74.44 83.98 88.10
Proposed 5.63 9.84 15.00 12.75 83.13 95.01 98.10

[0, 200]m

DirectionNet [2] 44.50 64.16 83.53 66.13 10.98 19.70 26.93
LOFTR + MAGSAC [1, 13] 26.66 42.65 54.69 34.71 53.28 60.78 65.34
RPNet [6] 41.61 61.45 85.68 59.15 17.71 29.69 38.22
SIFT + LO-RANSAC [3, 9] 48.48 67.35 80.78 73.93 6.68 12.34 17.58
SuperGlue + MAGSAC [1, 12] 30.39 47.67 61.71 39.86 45.75 54.81 60.10
ViTPose [11] 20.53 35.95 47.10 24.51 63.72 75.87 81.47
Proposed 15.42 26.55 23.25 18.55 71.27 87.05 94.05

[0, 300]m

DirectionNet [2] 51.54 76.85 87.36 67.24 10.54 18.89 25.85
LOFTR + MAGSAC [1, 13] 32.33 53.78 58.69 36.17 51.76 59.27 63.90
RPNet [6] 48.67 74.27 89.76 60.53 17.02 28.53 36.75
SIFT + LO-RANSAC [3, 9] 55.86 80.43 84.82 74.97 6.37 11.74 16.79
SuperGlue + MAGSAC [1, 12] 36.36 59.21 65.75 41.34 44.24 53.21 58.58
ViTPose [11] 25.58 46.14 50.50 26.14 61.57 73.71 79.70
Proposed 21.17 38.11 26.93 21.21 68.52 83.67 91.48

HITNet [14]

[0, 80]m

DirectionNet [2] 17.12 24.14 76.69 59.66 24.13 43.34 57.70
LOFTR + MAGSAC [1, 13] 8.22 13.30 37.37 26.28 66.75 77.07 83.51
RPNet [6] 15.70 22.60 68.43 54.86 31.28 52.84 66.95
SIFT + LO-RANSAC [3, 9] 20.36 26.56 73.35 66.74 13.15 24.55 34.35
SuperGlue + MAGSAC [1, 12] 9.33 14.84 42.44 30.49 62.13 75.11 83.14
ViTPose [11] 5.96 10.66 26.60 18.11 78.09 88.05 92.57
Proposed 4.20 6.98 11.77 12.11 85.68 96.34 98.72

[0, 100]m

DirectionNet [2] 21.80 31.58 86.46 63.39 22.50 40.37 53.82
LOFTR + MAGSAC [1, 13] 11.04 18.19 43.54 28.56 64.62 74.55 80.78
RPNet [6] 20.12 29.71 78.13 58.51 29.22 49.40 62.71
SIFT + LO-RANSAC [3, 9] 25.23 34.12 81.95 69.07 12.18 22.72 31.86
SuperGlue + MAGSAC [1, 12] 12.52 20.33 49.67 33.12 59.39 72.12 79.85
ViTPose [11] 8.22 14.96 31.76 20.06 74.98 85.61 90.44
Proposed 5.73 9.79 13.67 13.47 82.46 94.87 98.12

[0, 200]m

DirectionNet [2] 42.64 63.28 111.36 73.26 18.00 32.58 43.80
LOFTR + MAGSAC [1, 13] 24.46 40.41 60.06 35.28 57.86 67.74 73.38
RPNet [6] 40.40 60.96 102.74 68.72 23.49 40.12 51.44
SIFT + LO-RANSAC [3, 9] 46.91 66.43 104.37 75.28 9.81 18.35 25.80
SuperGlue + MAGSAC [1, 12] 28.15 45.71 69.46 40.63 51.04 63.54 70.79
ViTPose [11] 19.33 34.46 45.81 26.06 65.41 78.51 84.44
Proposed 15.55 26.78 21.50 19.66 70.71 87.02 94.28

[0, 300]m

DirectionNet [2] 51.89 80.65 119.13 78.33 17.20 31.03 41.69
LOFTR + MAGSAC [1, 13] 31.18 53.96 65.94 37.93 55.89 65.74 71.48
RPNet [6] 49.73 78.58 110.64 74.08 22.44 38.27 49.03
SIFT + LO-RANSAC [3, 9] 55.52 82.09 111.41 77.38 9.33 17.40 24.52
SuperGlue + MAGSAC [1, 12] 35.54 60.29 75.77 43.50 48.98 61.15 68.51
ViTPose [11] 25.32 46.70 50.48 28.48 62.90 75.90 82.46
Proposed 22.65 40.81 25.78 23.34 67.52 82.94 91.17

Table 7. Stereo depth evaluation on CARLA dataset using DLNR-Middlebury and HITNet stereo models.
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