Flow-Guided Online Stereo Rectification for Wide Baseline Stereo
(Supplementary Information)

1 I Omid Hosseini Jafari! Shile Li' Felix Heide' 2

ITorc Robotics  2Princeton University

Anush Kumar' Fahim Mannan

In this supplemental document, we present additional detail and experiments in support of the findings in the main manuscript.
Specifically, we provide details on the differentiable rectification module, stereo network architecture, and we discuss further
evaluations of the rotation error, depth quality, and provide additional qualitative results. Finally, we also provide further
qualitative examples of the datasets we use for training and evaluation of the proposed method. We also release the proposed
datasets at https://light.princeton.edu/online-stereo-recification/.
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1. Differentiable Rectification

An essential component in our model is the differentiable rectification module DRectify, which we describe in the following.
Being differentiable, this module enables us to train end-to-end while inferring rectified images from the model’s pose
predictions, which in-turn enables us to employ rectification constraints to the model during training.

To define this operator, we assume two images I1, [ € RHEXWX3 and the relative pose between the sensors as P =
[R|t] € SE(3) and intrinsics K1, Ko € R3*3, and we aim to project I1, I3 onto a common image plane using rectification
rotations R, Ry resulting in images [ __,, I> We use differentiable implementations from PyTorch3D and Kornia [5, 10]
for conversion between rotation representations such as matrix2euler, euler2matrix, rodrigues2matrix

rect*

Estimating Rectification Homographies. =~ We first extract our relative rotation and translation estimate R, ¢ from P and
transform them to half-rotations as defined below,

Rewier = matriz2euler(R) x —0.5, (1)

Rpaiy = euler2matriz(Reyier) @


https://light.princeton.edu/online-stereo-recification/

‘We then half-rotate our translation vector ¢ to obtain,
thalf = Rpaiyt 3)

Here, half-rotations are preferred as we can apply equal and opposite rotations to each image resulting in minimal Field-of-
View (FoV) loss as compared to applying a full rotation to only a single image from the stereo pair.

We previously assumed a horizontal baseline, and now define an arbitrary unit vector u € R3*! along the x-axis of ¢/
Assuming u is our ideal rectified baseline vector, we aim to estimate a rotation that aligns ?54;7 in the direction of u. To do
SO we estimate a vector

W = thaly X U “4)

normal to the plane containing t5,; 7, wWhere w represents a direction vector implicitly capturing the rotation required to
align tpq;¢ to u. Next, we convert to matrix representation wr = rodrigues2matriz(w) and compose with Rjq; s to obtain
the final rectification rotation homographies.

R, = wRRfazf, Ry = wrRhaif, trect = WRthalf )

This is followed by constructing the rectification projection matrices Py, ,, P»,.., € R*** and Q € R*** which is used to

map disparity to depth.

rect’?

Rectifying the Images. We now we have the rectification rotations R, I?2, the new projection matrices Py ., P,,., and
our original intrinsics K1, K in hand. To simplify notation, we describe this process for a single pixel but this is vectorized
in DRectify for efficiency and reused for both images. We convert a 2D pixel pyiq = (u,v, 1) in homogenous coordinates to
the normalized camera coordinates using P.ct.

rect

Pnorm = (Prect)_lpold (6)

Next we apply the homography R,...; as follows,

Prect = Rgectpnorm (7)

We then project p,..+ in camera coordinates to pixels using K

Pnew = Kprect (8)

Given the location of our new pixel coordinates, we apply the differentiable remap() function from Kornia [5, 8] to assign the
pixel value at p,q to ppew-

2. Network Architecture Details

In this section, we provide additional detail on the network architecture of our method. Table 1a lists the architecture of
our feature extractor and feature enhancer. We list our decoder architecture in Table 1b containing the layers and steps
involved to produce a valid rotation prediction from our model. We use this rotation estimate to rectify our images using the
differentiable rectification module described in Section 1. The differentiable rectification is also mentioned in Table 1a, this
step corresponds to rectifying the features to an initial rotation estimates as described in the main paper.

3. Network Architecture Ablations

Table 2 evaluates the proposed model in the absence of key components from the Network Architecture (Figure 2 of the
main paper). The experiments validate that the Feature enhancement (Figure 2(b) of main paper) play a significant role in
the performance, as does Feature Rectification (rectifying features to identity rotation matrix as an initial step). We also see
a drop in metrics in the absence of the Cost Volume, which replaces the cost volume and the decoder (Figure 2(c) of main
paper) with aggregation (concatenation) of image features followed by a series of 2D Convolutions and Pooling operations
before estimating rotation. We also observe poor performance when trained on lower resolution images (256x256 for main
model and 728x128 for flow estimation), while gaining 60% speedup in inference time. We include w/o Optical Flow and
the Proposed Model metrics from Table 2(c) in the main paper, for reference.



Layer # ‘ Layer Description ‘ Output Shape

CNN FEATURE EXTRACTOR

Conv2d
1 Residual Block-1 InstanceNorm 64 x 256 x 512
Skip Connection & ReLU
Conv2d
2 Residual Block-2 InstanceNorm 96 x 128 x 256
Skip Connection @ ReLU Layer # \ Layer Description \ Output Shape
Conv2d DECODER
3 Residual Block-3 InstanceNorm 128 x 64 x 128 -
Skip Connection & ReLU - Correlation Volume 64 x 128 x 64 x 128
. Differentiable Rectification 128 x 64 x 256 1 Decoder Block-1 | €onv3d 32 % 64 x 64 % 128
TRANSFORMER FEATURE ENHANCER BatchNorm3D
1 Positional Encoding 128 x 64 x 256 2 Decoder Block-2 Conv3d 16 x 64 x 64 x 128
Feed forward Network gamh;:]jor m3D
Transformer Block-1 | Self-Attention Block 128 x 8192 onv. .
2 Cross-Attention Block 3 Decoder Block-3 BatchNorm3D 8% 6464 x 128
"Feed forward Network Conv3d
Foed forward Network 4 Decoder Block-4 BatchNorm3D 4% 64 x 64 x 128
3 Transformer Block-2 | Self-Attention Block 128 x 8192 Conv3d
) Cross-Attention Block 5 Decoder Block-5 2 x 64 x 64 x 128
“Feed forward Network BatchNorm3D
Feed forward Network Conv3d
s Transformer Block-3 | Self-Attention Biock | 128 x 8192 6 Decoder Block-6 | BatchNorm3D | 1 x 64 x 64 x 128
Cross-Attention Block ReLU
"Feed forward Network R Max 1x 64 x 128
Feed forward Network - Flatten 1 x 8192
5 Transformer Block-4 Self»Allentlop Block 128 x 8192 Linear
_Cross-Attention Block 7 Tanh 1x6
Feed forward Network .
Feed forward Network - Gram-Schmidt 3x3
6 Transformer Block-5 | Self-Attention Block | 128 x 8192 (b)
Cross-Attention Block
"Feed forward Network
Feed forward Network
Transformer Block-6 | Self-Attention Block | 128 x 8192
7 .
Cross-Attention Block
"Feed forward Network

(a)

Table 1. (a) Architecture of the feature extractor and feature enhancement blocks. Here Differentiable Rectification corresponds to the
module described in Section 1. (b) Architecture for decoder module after the correlation volume is computed using the enhanced features
from Table 1a.

SIFT  SuperGlue Vertical Inference

Ablation MAE  Offset Offset Flow Time
(pixels) (pixels) (pixels) (msec)
w/o Feature Enhancement 0.15 8.47 6.88 6.82 41
w/o Feature Rectification 0.14 8.32 6.88 6.75 79
w/o Optical Flow 0.13 7.68 5.53 5.67 86
w/o Cost Volume 0.06 3.92 0.98 1.33 44
Proposed Model 0.05 3.55 0.64 1.003 86
w/ Reduced Image Resolution  0.08 3.98 1.07 1.39 36

Table 2. We provide additional ablation experiments on the Carla dataset. The experimennts validate the need for key components in the
network architecture.



4. Additional Rotation Errors Evaluations

Next, we provide additional evaluations that evaluate the rotation error as a metric typically evaluated to assess camera pose
estimation approaches. Table 3 reports the errors in rotation measured in degrees along x (Rx), y (f2,) and z (R,) axes of
rotation. These errors are computed as the mean absolute error between the ground truth relative rotation and the predicted
relative rotation, after conversion to axis angle representation. On the real datasets, Semi-Truck Highway and KITTI [7], our
method consistently outperforms other methods. We attribute this to our method being directly trained to reduce the rotation
error. We report these metrics here since it is standard practice in general camera pose estimation approaches. On the Carla
dataset, featuring extreme pose variations, still performs best overall while other pose estimation methods are in a competitive
range.

5. Additional Stereo Depth Evaluations

In this section, we provide further evaluation of the effect of different rectification methods on downstream stereo depth
estimation, in the presence of pose variation and de-calibration. We used two publicly available off-the-shelf stereo models
(HITNet [14] and DLNR [15]) for this evaluation. Given left and right input images (I, and Ir), we first retrieve the depth
map using ground-truth calibration in the following steps. We rectify I, and I using ground-truth calibration parameters
and get I37ect and I3°c!. Then, we pass I;7“! and I37°°* to the stereo model and compute the depth map Y */¢t. We
finally unrectify the depth map, yielding the reference depth Y * with ground truth calibration. For a given calibration method
M, we then estimate depth by rectifying I7, and I using calibration parameters of M and get I3 et and 1A Rect, We pass
[MRect qnd [MEect (o the identical stereo model from above and compute the depth map Y M £e¢t which we also unrectify
to yield the estimated depth map Y for method M.

Given the predicted depth value of a pixel y; from Y and the depth value of a pixel y on Y* with ground truth
calibration, we evaluate the following metrics:

¢ Mean Absolute Error (MAE):
1 *
~ E ly; — vil )

1
W 2w ) (10)

2
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* Root Mean Squared Error (RMSE):

* Scale Invariant Logarithmic error (SILog):

where d; = logy; — logy;.
» Absolute Relative Error percent (AbsRel):

Ly —w
— | 100 12
Ny | 1
* Accuracy with threshold thr: percentage (%) of y; s.t.
max (y y) — 6 < thr, (13)
Yi Y;

where thr € {1.25,1.25%,1.253}.

We evaluate the metrics in binned [0, 80]m, [0 — 100]m, [0 —200]m, and [0 — 300]m depth ranges. The proposed method con-
sistently outperforms existing methods on the Semi-Truck Highway and KITTI [7] (Tables 5 and 6) and compares favorably
on the CARLA dataset (Table 7).



Figure 1. Semi-Truck Highway Data Distribution. (Left) Summarises the distribution of data samples in Highway Scenes v/s Urban
Scenes. (Right) Summarises the distribution of data based on the time of day, to capture the variation in natural light throughout the dataset.

6. Additional Dataset Details

We include additional details and examples from our two proposed datasets, the Semi-Truck Highway dataset in Fig. 2, and
our custom CARLA dataset in Fig. 3. The examples highlight the diversity in scenes, lighting and environment that were
described in the main manuscript.

The Semi-Truck Highway captures wide-baseline calibration deterioration naturally in a long-haul trucking operation
setting. The dataset was captured with four front-facing 8MP 20-bit RCCB HDR sensors (AR0820) with 30 degrees hori-
zontal field of view lenses. The cameras were mounted on a single rigid bar placed on a truck at a height of approximately
3m from the ground, and the cameras were distributed over a 2m baseline with the baseline varying between 0.6m and 0.7m.
The mounting plate for the cameras were custom-made to ensure that they are attached rigidly and there are no significant
orientation differences between each pair. Offline calibration was performed before and after each capture drive to ensure
consistency in the offline calibration parameters. Calibration was performed in two stages: lab-based offline intrinsic param-
eter estimation and on-site calibration using charts with clearly detectable patterns. Calibration captures were done while the
vehicle was static, either in neutral or the engine turned off, to reduce any artifacts due to camera vibration and rolling-shutter
effects. A total of 52 hours of data were collected in urban areas and highways under varying illumination conditions. Fig. 1
shows the scene and illumination distribution. Here, we include the distribution of data based on the scene (Highway, Urban)
and the time of day which we split into (noon, dusk and night). We provide additional metrics on the Semi-Truck Highway
dataset based on the time of day evaluations in Table 4. We provide a breakdown of the metrics based on time of day on
our proposed method and our baseline methods, as seen in from the table our method performs well in challenging low light
scenarios (Dusk and Night) with comparable metrics to daytime scenes (Noon).

Our custom CARLA dataset was created to maximize the diversity of poses. While our real data were captured across
multiple capture campaigns to maximize the scene and illumination diversity, pose diversity is still hard to achieve in practice.
To this end, we used CARLA to synthetically generate different pose variations while having a setup close to the Truck setup.
For the synthetic dataset we used the same 8MP resolution cameras with a 30 degrees field of view but in RGB format. The
cameras are placed at a height of 2.5m from the ground and a baseline of 0.8m between each pair. For the scenes, we used
TownO1 to Town06 with random waypoints. For each waypoint, the cameras poses are randomly perturbed before rendering
the scene.

7. Additional Qualitative Images

To provide further qualitative insight into the effectiveness of our proposed method, we add additional qualitative images
from all three datasets we evaluate on. We overlay the left-right rectified stereo pairs and include the corresponding stereo
depth inferred by HITNet [14] on these images. For KITTI [7], we see our model compares favorably as reported in Fig. 4.
Our evaluation on the semi-truck highway datasets highlights the effects of wide baseline calibration deterioration, see Fig. 5.
The results on CARLA dataset show our model ability to handle large pose variations while also displaying the challenge this
dataset proposes when comparing the results from the other methods, see Fig. 6. The proposed method handles significant



R, R, R,

Dataset Method (degrees) (degrees) (degrees)
SIFT + LO-RANSAC [3, 9] 6.64 5.37 10.15
SuperGlue + MAGSAC [1, 12] 0.79 0.46 0.18
LOFTR + MAGSAC [1, 13] 0.69 3.05 0.50
. . RPNet [6] 0.62 1.16 0.49
(@) Semi-Truck Highway 1y, o ionNet 2] 0.37 3.6 0.47
ViTPose [11] 0.15 0.16 0.11
Ours (w/o OF) 0.03 0.05 0.04
Ours (w/ OF) 0.02 0.02 0.01
SIFT + LO-RANSAC [3, 9] 2.18 1.51 2.66
SuperGlue + MAGSAC [1, 12] 0.19 0.11 0.03
LOFTR + MAGSAC [1, 13] 0.10 0.10 0.02
RPNet [6] 0.08 0.28 0.03
(b) KITTI[7] DirectionNet [2] 0.08 0.19 0.12
ViTPose [11] 0.05 0.09 0.06
Ours (w/o OF) 0.02 0.05 0.004
Ours (w/ OF) 0.03 0.003 0.008
SIFT + LO-RANSAC [3, 9] 3.32 1.80 2.85
SuperGlue + MAGSAC [1, 12] 0.29 0.11 0.03
LOFTR + MAGSAC [1, 13] 0.45 0.14 0.14
RPNet [6] 0.55 0.66 0.66
() CARLA DirectionNet [2] 1.10 0.80 0.76
ViTPose [11] 0.12 0.16 0.29
Ours (w/o OF) 0.55 0.53 0.52
Ours (w/ OF) 0.03 0.23 0.11

Table 3. Quantitative Evaluation on the (a) Semi-Truck Highway, (b) KITTI [7] and (c) Carla Datasets. Included in this table are the
Rotation errors along all three axes of rotation. We compute the MAE between the predicted rotation estimates and the ground truth
rotation. R, R, and R correspond to rotations about x, y, and z-axis respectively.

pose variations in a diverse set of scenarios and lighting conditions, as also validated by the quantitative evaluations in Section
4 and Section 5.
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SIFT  SuperGlue Vertical

Dataset Method MAE  Offset Offset Flow
(pixels) (pixels) (pixels)
Unrectified 0.26 8.00 2.56 4.52
GT (Offline Calibration) - 2.93 0.79 0.69
S SIFT + LO-RANSAC [3,9] 032 2568 2650 1774
SuperGlue + MAGSAC [1, 12]  0.16 13.73 11.01 11.35
(a) Noon LOFTR + MAGSAC [1, 13] 0.17 14.12 11.34 11.49
RPNet [6] 0.20 11.15 8.39 8.66
DirectionNet [2] 0.33 7.68 5.36 5.76
ViTPose [11] 0.07 4.39 2.29 2.80
Ours 0.018 2.70 0.59 1.09
Unrectified 0.21 7.64 2.23 4.89
GT (Offline Calibration) - 3.17 0.76 0.71
S SIFT + LO-RANSAC [3,9] 030  28.68 3456 1832
SuperGlue + MAGSAC [1, 12]  0.13 16.31 12.82 12.94
(b) Dusk  LOFTR + MAGSAC [1, 13] 0.13 16.6 13.2 12.95
RPNet [6] 0.17 12.88 9.52 9.79
DirectionNet [2] 0.25 8.78 6.13 6.53
ViTPose [11] 0.05 4.47 2.07 2.63
Ours 0.013 2.88 0.56 1.13
Unrectified 0.15 14.11 9.10 9.83
GT (Offline Calibration) - 2.70 0.71 0.41
S SIFT + LO-RANSAC [3,9]  0.16 2217 2076 1739
SuperGlue + MAGSAC [1, 12]  0.12 17.47 13.97 14.22
(c) Night LOFTR + MAGSAC [1, 13] 0.11 19.42 15.74 16.32
RPNet [6] 0.12 15.89 12.61 12.59
DirectionNet [2] 0.16 11.14 9.20 9.82
ViTPose [11] 0.07 5.71 4.0 4.03
Ours 0.010 2.64 0.68 0.77

Table 4. Quantitative Evaluation on the (a) Noon, (b) Dusk and (c) Night scenes from the Semi-Truck Highway Dataset. Evaluation on
unrectified images and ground truth images are also included.



Figure 2. Semi-Truck Highway Samples These are scenes picked at random from our proposed real dataset. As seen the scenes are
predominantly highway and urban coupled with different lighting conditions based on the time of day.



Figure 3. Carla Dataset Samples These are scenes picked at random from our proposed CARLA[4] simulated dataset. As seen the
scenes are more urban while the lighting variations are more significant. Additionally we also have similar scenes with different lighting
conditions in this dataset.



SuperGlue + MAGSAC [1, 12] RPNet [6] LOFTR + MAGSAC [1, 13] ViTPose [11] Proposed GT

Figure 4. KITTI [7] Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents a different
rectification method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical disparity. Every
row is accompanied by the corresponding depth inferred from HITNet [14].



SuperGlue + MAGSAC [1, 12] RPNet [6] LOFTR + MAGSAC [1, 13] ViTPose [11] Proposed GT

Figure 5. Semi-Truck Highway Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents
a different rectification method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical
disparity. Every row is accompanied by the corresponding depth inferred from HITNet [14].



SuperGlue + MAGSAC [1, 12] RPNet [6] LOFTR + MAGSAC [1, 13] ViTPose [11] Proposed GT

Figure 6. CARLA Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents a different
rectification method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical disparity. Every
row is accompanied by the corresponding depth inferred from HITNet [14].



lower is better higher is better

Stereo Model Depth Range Method MAE RMSE SILog absrel | d<1.25 d<125% d<1.25’

DirectionNet [2] 22.81 27.57 4233 61.98| 5098 13.58 23.69
LOFTR + MAGSAC [1, 13] 20.70 25.75 49.53 54.87| 20.82  31.61 39.99
RPNet [6] 21.79 26.86 52.79 5881 | 11.80 24.02 34.72

,80]m +LO- 3, . . . . . . .
0, 80 SIFT + LO-RANSAC [3, 9] 23.99 28.74 59.35 6491 | 10.56 19.79 27.89
SuperGlue + MAGSAC [1, 12] 20.97 26.05 50.26 55.70 | 19.73 30.46 38.95

ViTPose [11] 1044 1531 3450 26.64| 6293 72.14 77.85
Proposed 319 596 1042 10.05| 9198  95.29 97.15
DirectionNet [2] 26.52 3298 46.21 63.47| 5.60 12.72 22.17
LOFTR + MAGSAC [1, 13] 2431 31.06 5348 56.70 | 19.49  29.83 37.94
RPNet [6] 2543 3220 5640 60.47| 1097 2237 3245

[0,100]m SIFT + LO-RANSAC [3, 9] 2779 34.16 62.81 6637 | 9.86 18.53 26.23
SuperGlue + MAGSAC [1, 12] 24.61 31.41 5423 57.57| 1849  28.71 36.87

ViTPose [11] 13.03 19.62 3849 2891 | 60.07 69.58  75.58

DLNR [15] Proposed 427 8.07 12.03 12.12| 90.94 94.60 96.54
DirectionNet [2] 3991 5379 57.19 66.86| 4.84 10.95 19.09

LOFTR + MAGSAC [1, 13]  37.33 5143 64.13 60.84| 1692 26.12  33.50

RPNet [6] 38.58 52.77 6649 64.26| 9.34 19.02 27.76

[0,200]m SIFT + LO-RANSAC [3, 9] 4134 5474 7222 69.78 | 8.45 1595 2271
SuperGlue + MAGSAC [1, 12] 37.72 51.88 64.85 61.73| 16.05 25.10 3247

ViTPose [11] 2324 3734 4941 3479 | 5342  63.28 69.77

Proposed 826 16.63 16.21 17.65| 88.3¢4 93.16  95.50

DirectionNet [2] 4728 6622 61.68 6791 | 4.64 10.49 18.28

LOFTR + MAGSAC [1, 13] 44.57 63.72 68.39 62.13 | 16.25 25.11 32.27

RPNet [6] 4590 65.19 70.68 65.44| 8.92 18.16  26.52

[0, 300]m SIFT + LO-RANSAC [3, 9] 48.70 66.93 76.05 70.86| 8.07 1528  21.78
SuperGlue + MAGSAC [1, 12] 4499 64.18 69.12 62.97| 1542  24.15 31.27

ViTPose [11] 29.34 48.72 5383 3692 | 5141 6123  67.78

Proposed 10.67 2238 17.81 19.78 | 87.30 92.62  95.16

DirectionNet [2] 21.86 26.83 4891 63.74| 6.80 1524 26.00

LOFTR + MAGSAC [1, 13] 1831 23.70 50.62 50.27 | 2580 39.03  48.61

RPNet [6] 19.78 25.36 58.72 55.66 | 15.69  30.73 42.99

[0, 80)m SIFT + LO-RANSAC [3, 9] 22779 2775 66.73 64.86| 12.38  23.85 34.53
SuperGlue + MAGSAC [1, 12] 18.53 23.96 51.55 50.84 | 24.60 37.86  47.68

ViTPose [11] 7.54 11.82 2796 19.87| 71.98 82.70 87.76

Proposed 1.71 394 7.82 5.01 | 96.27 98.01 98.86

DirectionNet [2] 25.19 32.01 5350 65.61| 6.47 1448 2473

LOFTR + MAGSAC [1, 13] 21.50 28.77 55.55 5236 24.48  37.28 46.65

RPNet [0] 23.10 30.58 63.64 57.80| 14.80 29.06  40.84

[0, 100]m SIFT + LO-RANSAC [3, 9] 26.31 33.03 7140 66.88| 11.72 22.60  32.86
SuperGlue + MAGSAC [1, 12] 21.74 29.06 56.50 52.91| 23.35 36.15 45.70

ViTPose [11] 9.50 1543 31.70 21.65| 69.56  80.75 86.10

HITNet [14] Pr.0p0546d 238 554 9.04 6.09 | 9561 97.58  98.52
DirectionNet [2] 37.95 54.05 6691 69.98| 5.75 12.87 21.96

LOFTR + MAGSAC [1, 13]  33.94 50.62 69.59 57.82| 21.66 3332  42.06

RPNet [6] 3575 52.68 77.57 63.18| 1295 2552  36.05

[0,200]m SIFT + LO-RANSAC [3, 9] 39.51 55.10 8443 71.55| 10.33  20.02 29.26
SuperGlue + MAGSAC [1, 12] 34.20 5092 70.52 58.20| 20.69  32.28 41.16

ViTPose [11] 18.05 32.62 43.18 27.00| 6342  75.36 81.44
Proposed 6.02 14.56 13.32 10.66 | 93.54 96.14 97.41
DirectionNet [2] 4722 71.78 7397 7T71.85| 5.46 12.21 20.84
LOFTR + MAGSAC [1, 13] 43.19 68.59 76.80 60.62| 20.60 31.73 40.15
RPNet [6] 44.88 70.37 84.58 6549 | 1226 24.18 34.23

[0, 300]m SIFT + LO-RANSAC [3, 9] 49.22 73.17 91.17 73.76 | 9.79 19.03 27.86
SuperGlue + MAGSAC [1, 12] 43.48 68.87 77.74 60.85| 19.68  30.74 39.27
ViTPose [11] 25.39 48.54 49.56 30.19| 60.74  72.69 79.06

Proposed 9.53 24.04 1599 14.20| 92.53 9547 96.83

Table 5. Stereo depth evaluation on Semi-Truck Highway dataset using DLNR-Middlebury and HITNet stereo models.



lower is better higher is better

Stereo Model Depth Range Method MAE RMSE SILog absrel | d<1.25 d<125% d<1.25’

DirectionNet [2] 512 911 27.80 18.61| 7558  88.10 92.23
LOFTR + MAGSAC [1, 13] 334 610 17.50 12.13| 87.02  92.19 94.11
RPNet [6] 586 10.00 27.73 21.85| 70.67  89.10 94.18

,80]m +LO- 3, . . . . . . .
0, 80 SIFT + LO-RANSAC [3, 9] 15.78 20.84 64.55 74.01| 4.86 9.56 14.11
SuperGlue + MAGSAC [1, 12] 5.41 9.02 28.76 21.03| 72.24 79.03 82.45

ViTPose [11] 210 422 10.01 7.55 | 9521  98.39 99.30
Proposed 097 259 894 350 | 96.88 9891 99.53
DirectionNet [2] 589 10.88 29.21 1945 7441  87.10 91.65
LOFTR + MAGSAC [1, 13] 381 721 1830 1253 | 86.03 91.87 93.89
RPNet [6] 6.74 12.04 2941 2287 | 69.46  87.67 93.51

[0,100]m SIFT + LO-RANSAC [3, 9] 1693 23.07 66.15 7439 | 4.77 9.39 13.86
SuperGlue + MAGSAC [1, 12] 6.05 10.45 29.87 2148 | 71.46  78.52 82.05

ViTPose [11] 243 510 10.60 7.89 | 9443 9820  99.20

DLNR [15] Proposed 115 310 931 3.66 | 96.63 98.79 99.47
DirectionNet [2] 8.14 17.35 3221 21.51| 7272 8519  90.19

LOFTR + MAGSAC [1, 13] 494 1052 20.04 13.20| 84.66 91.10  93.48

RPNet [6] 9.51 20.01 33.13 25.53| 67.72  85.27 91.20

[0,200]m SIFT + LO-RANSAC [3, 9] 19.23 2845 69.11 7499 | 4.65 9.17 13.55
SuperGlue + MAGSAC [1, 12] 7.47 1427 3198 22.15| 7041 7770 8143

ViTPose [11] 333 800 1198 855 | 9294 97.68  98.93

Proposed 1.60 470 9.98 3.96 | 96.22 98.57  99.34

DirectionNet [2] 9.44 22.09 3349 2247| 7242 8478  89.66

LOFTR + MAGSAC [1, 13] 547 1242 20.64 13.40| 84.39  90.84 93.30

RPNet [6] 11.11 2593 3477 2677 | 67.44 84.85  90.60

[0, 300]m SIFT + LO-RANSAC [3, 9] 20.13 31.06 70.03 75.17 | 4.63 9.12 13.49
SuperGlue + MAGSAC [1, 12] 8.11 1636 32.71 22.32| 70.21 77.49 81.24

ViTPose [11] 379 978 1250 8.80 | 92.63 9742  98.80

Proposed 1.82 566 10.17 4.05 | 96.09 98.51  99.30

DirectionNet [2] 458 821 17.65 16.84| 78.86 9392  97.69

LOFTR + MAGSAC [1, 13] 261 502 1372 972 | 91.09 9577 97.14

RPNet [6] 594 995 16.05 2242 | 6920 92.84 99.12

[0, 80)m SIFT + LO-RANSAC [3, 9] 15.84 21.24 80.87 78.53| 6.50 12.74 18.48
SuperGlue + MAGSAC [1, 12] 4.16 7.54 23.79 16.19| 78.18 86.37  89.91

ViTPose [11] 1.78 359 840 645 | 97.70  99.19 99.61

Proposed 066 221 747 270 | 98.63 9941  99.70

DirectionNet [2] 560 10.67 19.55 18.25| 77.17 9225  96.97

LOFTR + MAGSAC [1, 13] 307 628 14.70 10.14| 89.90 9544 96.96

RPNet [0] 7.35 13.15 18.59 2447| 67.37  89.99  98.00

[0, 100]m SIFT + LO-RANSAC [3, 9] 17.12 23.79 83.16 79.59 | 6.38 12.49 18.15
SuperGlue + MAGSAC [1, 12] 4.78 9.11 25.22 16.69| 77.24  85.75 89.49

ViTPose [11] 212 460 9.05 6.80 | 96.67 99.07  99.56

HITNet [14] Pr.0p0546d 081 2.82 792 287 | 9846 99.34  99.67
DirectionNet [2] 10.56 24.85 2692 23.79| 7422  88.33 93.30

LOFTR + MAGSAC [1, 13] 483 12.08 18.04 11.25| 87.70 9397  96.18

RPNet [6] 14.09 31.19 28.09 32.54| 6451 8518  91.79

[0,200]m SIFT + LO-RANSAC [3, 9] 21.05 3329 88.71 83.34| 6.15 12.06 17.54
SuperGlue + MAGSAC [1, 12] 6.96 15.72 2939 17.94| 7549 84.18 88.24

ViTPose [11] 350 9.62 1157 7.82 | 9418  98.24 99.19
Proposed 1.54 622 9.60 349 | 9783 99.01 99.47
DirectionNet [2] 15.19 39.74 31.83 28.03 | 73.42  87.25 91.84
LOFTR + MAGSAC [1, 13] 6.46 18.01 2037 11.86| 86.98 93.23 95.54
RPNet [6] 20.48 50.30 34.56 3890 | 63.78  84.04 90.12

[0, 300]m SIFT + LO-RANSAC [3, 9] 23.96 41.75 91.36 86.18 | 6.08 11.92 17.33
SuperGlue + MAGSAC [1, 12] 8.87 22.19 31.88 18.61| 7490  83.52 87.59
ViTPose [11] 476 1477 13.43 842 | 9336 97.49 98.75

Proposed 237 990 1081 393 | 97.32 98.75 99.30

Table 6. Stereo depth evaluation on KITTT dataset using DLNR-Middlebury and HITNet stereo models.



lower is better higher is better

Stereo Model Depth Range Method MAE RMSE SILog absrel |d<125 d<125% d<1.25"

DirectionNet [2] 18.19 2441 61.00 57.79| 15.15 2698 36.52
LOFTR + MAGSAC [1, 13] 898 13.85 3524 2641| 6229  69.60 74.44
RPNet [6] 16.08 2244 61.23 49.54| 2401  39.87 50.73

[0, 80]m SIFT + LO-RANSAC [3, 9] 2097 26.74 6047 67.25| 9.10 16.80 23.81
SuperGlue + MAGSAC [1, 12] 10.37 15.65 41.00 30.81 | 5593  64.58 70.18

ViTPose [11] 591 1043 2790 1620 77.74  86.42 90.08
Proposed 4.06 695 12.78 11.40| 86.48  96.55 98.75
DirectionNet [2] 22.82 31.75 6642 59.88| 14.00 24.99 33.90
LOFTR + MAGSAC [1, 13] 11.89 18.85 39.83 28.30| 60.28  67.47 72.26
RPNet [6] 20.52 29.58 67.22 51.96| 2225 37.06 47.32

[0, 100)m SIFT + LO-RANSAC [3, 9] 25.86 3425 65.31 6896 | 8.41 15.51 22.03
SuperGlue + MAGSAC [1, 12] 13.61 21.12 45.78 32.89| 53.50 62.20 67.67

ViTPose [11] 8.25 14.82 32.68 18.08| 7444 8398  88.10

DLNR [15] Proposed 563 984 1500 12.75| 83.13 95.01 98.10
DirectionNet [2] 4450 64.16 83.53 66.13| 1098 19.70  26.93

LOFTR + MAGSAC [1, 13]  26.66 42.65 54.69 34.71| 5328 60.78 6534

RPNet [6] 41.61 61.45 8568 59.15| 17.71 29.69 38.22

[0,200]m SIFT + LO-RANSAC [3, 9] 48.48 67.35 80.78 73.93| 6.68 12.34 17.58
SuperGlue + MAGSAC [1, 12] 30.39 47.67 61.71 39.86| 4575  54.81 60.10

ViTPose [11] 20.53 3595 47.10 2451 | 63.72  75.87 81.47

Proposed 1542 26.55 23.25 18.55| 71.27 87.05  94.05

DirectionNet [2] 51.54 7685 8736 67.24| 10.54 18.89  25.85

LOFTR + MAGSAC [1, 13] 32.33 5378 58.69 36.17| 51.76  59.27 63.90

RPNet [0] 48.67 7427 89.76 60.53 | 17.02  28.53 36.75

[0, 300]m SIFT + LO-RANSAC [3, 9] 55.86 80.43 84.82 7497| 6.37 11.74 16.79
SuperGlue + MAGSAC [1, 12] 36.36 59.21 65.75 41.34| 4424  53.21 58.58

ViTPose [11] 25.58 46.14 5050 26.14| 61.57  73.71 79.70

Proposed 21.17 38.11 2693 21.21| 68.52 83.67 9148

DirectionNet [2] 17.12 24.14 76.69 59.66 | 24.13 4334  57.70

LOFTR + MAGSAC [1, 13] 8.22 13.30 37.37 26.28| 66.75 77.07  83.51

RPNet [6] 15.70 22.60 68.43 54.86| 31.28 52.84 66.95

[0, 80)m SIFT + LO-RANSAC [3, 9] 20.36  26.56 7335 66.74| 13.15  24.55 34.35
SuperGlue + MAGSAC [1, 12] 933 14.84 4244 3049 | 62.13  75.11 83.14

ViTPose [11] 596 10.66 26.60 18.11| 78.09 88.05 92.57

Proposed 420 6.98 11.77 12.11| 85.68 96.34  98.72

DirectionNet [2] 21.80 31.58 86.46 63.39| 22.50 40.37  53.82

LOFTR + MAGSAC [1, 13] 11.04 18.19 43.54 28.56| 64.62  74.55 80.78

RPNet [0] 20.12 29.71 78.13 58.51| 29.22 4940  62.71

[0,100]m SIFT + LO-RANSAC [3, 9] 2523 34.12 8195 69.07| 12.18 2272  31.86
SuperGlue + MAGSAC [1, 12] 12.52 20.33 49.67 33.12| 59.39 72.12 79.85

ViTPose [11] 8.22 1496 31.76 20.06 | 7498  85.61 90.44

HITNet [14] Pr.opoged 573 979 13.67 1347 | 8246 9487  98.12
DirectionNet [2] 42.64 63.28 111.36 73.26 | 18.00  32.58 43.80

LOFTR + MAGSAC [1, 13] 2446 4041 60.06 3528 | 57.86 67.74  73.38

RPNet [0] 40.40 60.96 102.74 68.72| 2349 40.12 5144

[0,200])m SIFT + LO-RANSAC [3, 9] 4691 66.43 104.37 75.28 | 9.81 18.35 25.80
SuperGlue + MAGSAC [1, 12] 28.15 4571 69.46 40.63 | 51.04  63.54 70.79

ViTPose [11] 19.33 3446 45.81 26.06| 6541 7851 84.44
Proposed 1555 26.78 21.50 19.66 | 70.71  87.02 94.28
DirectionNet [2] 51.89 80.65 119.13 78.33| 1720 31.03 41.69
LOFTR + MAGSAC [1, 13] 31.18 5396 6594 3793| 5589 65.74 71.48
RPNet [6] 49.73 78.58 110.64 74.08 | 22.44  38.27 49.03

[0, 300]m SIFT + LO-RANSAC [3, 9] 55.52 82.09 11141 77.38| 9.33 17.40 24.52
SuperGlue + MAGSAC [1, 12] 35.54 60.29 75.77 43.50| 4898  61.15 68.51
ViTPose [11] 2532 46.70 50.48 28.48| 6290 7590 82.46

Proposed 22.65 40.81 25.78 23.34| 67.52  82.94 91.17

Table 7. Stereo depth evaluation on CARLA dataset using DLNR-Middlebury and HITNet stereo models.
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