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Figure 1. Row 1 denotes k-simplexes and simplicial complexes.
These are generalizations of graphs to higher dimensions. Row
2: PH discovers the global shape of a dataset. Row 3 denotes
the progression of filtration on a point cloud. As the filtration pro-
gresses, new simplicies are added to the simplicial complex. Im-
age taken from Lia et al. [8].

1. Persistent Homology

We provide a detailed description of Persistent Homology
(PH) and its application on point clouds and images. A
topological space can be encoded as cell complexes - a col-
lection of k-dim simplicies (k = (0,1, 2...) (Figure 1 - row
1). Homology, an algebraic invariant of a topological space,
uses local computation to capture global shape information
(k-dim holes) of a topological space (Figure 1- row 2 and
3). These holes, generalized to various dimensions, form
the basis of homology [1].

Persistent Homology (PH) is an algebraic method to
discover topological features of datasets. It converts a
dataset (e.g., point cloud) to a simplicial complex and stud-
ies the change of homology across an increasing sequence
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of simplicial complexes ¢ C C; C C; C Cs....C;....C,, =C,
known as filtration [1]. Topological features are computed
at different spatial resolutions across the subsequence. Ex-
amining the persistence of the features over a range of scales
reveals insights about the underlying patterns in datasets.
For point clouds, the filtration is defined on the edges of
the complex. We define a sub-level filtration over C. Ev-
ery simplicial complex in the subsequence can be mapped
to a number using a filtration function f((vg, v1...v,)) =

max f(vi,v;)). This filtration, known as flag
1<j;t,j€0,1,2,3...n

filtration, is based on the pairwise distance between points
and is monotonic (every subsequent simplicial complex has
a value higher than the previous).

For example - given a set of points in a 3D space, the fil-
tration can be generated by an increasing a-neighbourhood
ball for each point (See Table 1). For the given «, two balls
intersect when two points are no further apart than distance
2. At this moment, the two points are connected by an
edge. For a given «, we connect all points that are no fur-
ther than 2. Assuming k edges are introduced at a given
«, an ordering is given to these edges (i.e., the edges appear
in that sequence). Further, the introduction of an edge (1-D
simplex) can lead to the creation of a higher-order simplex
(triangle, tetrahedron, and so on). These are also a part of
the filtration - lower dimension simplicies are added to the
filtration before the higher dimensions. The progress of fil-
tration leads to the construction or destruction of homology
(k-dim holes - connected components, cycles, voids, and so
on) based on the following principles-

e The appearance of an edge leads to the creation of a
k-dim hole that is not part of an existing in the previous
sequence. This leads to the birth of a feature.

e The appearance of an edge leads to the completion of
a k-dim hole that was discovered previously (i.e., the k-dim
hole is completely filled with equal and lesser dimension
simplicies). This leads to the death of the feature that was
born at the birth of the hole. For example - the occurrence
of four points connected to form a rectangle creates a /-
d hole (cycle). When the diagonal edge is introduced at a
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Table 1. Left to Right. Progression of filtration on a point cloud over different spatial resolutions. Image taken from Wright ez al. [10].

later time in the filtration (for a higher value of «), it leads
to the rectangle filled with two triangles (2-simplex). This
leads to the death of the /-d hole feature.

Each 1-dim hole appears at a particular value of o and
disappears at another value of a. The addition of an edge
either creates or destroys a homology. For our case, given
a set of points in 2D space (a point cloud or an image with
pixel values), we do not know what s to use to obtain the
most important features. Therefore, we consider all values
and observe the change in homology for different values of
«. This leads to a nested sequence of increasing subsets of
simplicial complexes referred to as a filtration. Each hole
appears at a particular value of « (b) and disappears at an-
other value of « (d). The persistence of the hole is repre-
sented as a birth-death pair (b, d). Visualizing all such pairs
for all holes in the form of bars leads to a barcode. Short
bars might represent noise, while long bars represent impor-
tant features.

Unlike point clouds, images do not have a concept of
pairwise distance. Instead, the intensity value of the pixels
of an image help to create a filtration. For images, the final
simplicial complex, C can be taken to be the triangulation
of the image grid where the intersection refer to the pixels
of the image. Like point clouds, sub-level set filtrations are
used here. The filtration function for the sublevel filtrations

is f((vo,v1...v0)) = L max nf(vi)), which translates

to the maximum intensity value of a pixel in a simplicial
complex. The only difference is - instead of using pairwise
distance for generating sub-level set filtrations, we use the
pixel intensity values. « is initialized to the minimum inten-
sity value. As it increases, the sub-level set increases, and
more pixels with intensity < « are included in the filtration.
New simplicies are added to the existing complex, and the
filtration progresses.

2. Paired Scan Generation

We have described the method for generating correspon-
dence pairs for datasets already existing in the literature.
Assume we have a sequence of scans K = {k;: 1,2,3...}.
We generate pairs Kp, Kg — Kp is the set of dynamic,

and K g denotes the static scans by utilizing semantic seg-
mentation information.

We divide the LiDAR scan and the range image into
eight sectors. We identify a source and a target sector. Dy-
namic objects from the source sector are introduced into
the target sector. We may have multiple target sectors de-
pending on the availability of probable regions where new
objects can be augmented. We depict the division of the
LiDAR into eight sectors in Figure 2a. We further demon-
strate the augmentation process for a correspondence pair
generation in Figure 2b.

We do not claim that the augmented generated dynamic
LiDAR would be totally realistic and follow all rules of the
road. For instance, in a certain case with two vehicles: one
being the already present and the other being the augmented
one in the opposite lane of the AV, both may appear to over-
lay over each other. However, the data is sufficient to train
GLiDR accurately. These issues are minor, and a large per-
centage of LiDAR frames are augmented with realistic dy-
namism at realistic locations. This is also demonstrated by
the effect of augmentation of static structures on SLAM per-
formance as shown in Table 2, 4 and Figure 3.

3. Segmentation mask generated by GLiDR

We demonstrate the segmentation masks for dynamic and
static objects generated by GLiDR. We provide a video in
the Supplementary material that demonstrates the accuracy
of the binary segmentation mask generated by GLiDR. We
remove the ground points from the LiDAR before generat-
ing the mask. Ground points are not useful for navigation
and are also removed by SLAM algorithms before naviga-
tion. We classify all the above-ground points into static
and dynamic objects. Dynamic objects - whether moving
or stationary are marked with blue, while static objects are
marked with red.

4. Baselines

CP3 Xu et al. [13] present an architecture for shape
completion which is inspired by the prompting methods
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(a) A LiDAR scan is divided into eight sectors that translate to corresponding regions in the range image segmentation mask.
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(b) View in the clockwise direction from top right. We identify the source sector (highlighted in red in the LiDAR scan) and extract the segmentation mask
(also in red) in the range image mask. The source sector mask is inserted in target sectors (0 and 3 - indicated by green) in the new mask. Overlaying the
new mask over the LiIDAR scan augments the LIiDAR with dynamic objects (in the sectors indicated by the green.)

Figure 2. The corresponding pair pipeline results in the creation of a static-dynamic pair for KITTI. Static scan - original scan with dynamic
object removed using segmentation mask. Dynamic scan - the output of the pipeline with the augmented new dynamic objects.

in NLP. The approach involves a Pretrain-Prompt-Predict as the prompt and predict steps. They use IOl pretraining
paradigm, treating point cloud generation and refinement to achieve higher robustness in point cloud generation by



learning a pretext task in a self-supervised manner. The au-
thors also introduce a novel Semantic Conditional Refine-
ment (SCR) at the prediction step to discriminatively mod-
ulate refinement with semantic guidance.

Coase Net Wang et al. [12] is a two-stage approach for
dynamic to static image translation applicable for 2D im-
ages. The authors formulate the problem as an image in-
painting problem and aim to mitigate the loss of detail in
the original static reconstructions. In the initial stage, a ba-
sic encoder-decoder network is used to generate a coarse
representation of the static image, with which dynamic ob-
jects and their shadows are identified. In the second stage,
the missing static pixels in the estimated dynamic regions
are recovered based on their coarse predictions, which are
improved by a mutual texture-structure attention module,
allowing dynamic regions to incorporate textures and struc-
tures from distant areas with similar contexts.

Topological Autoencoders Moor et al. [7] introduces
an approach of constraining autoencoders to preserve topo-
logical structures from the input space in the latent space
of the autoencoder. The authors employ persistent homol-
ogy (with the Vietoris-Rips complex) to formulate a dif-
ferentiable loss function considering the topological signa-
tures of both input and latent space. This approximation of
the persistent homology loss calculations is combined with
backpropagation on the level of mini-batches.

DSLR Kumar et al. [5] tackles the challenge of trans-
lating dynamic LiDAR data into static representations us-
ing range images. They employ an adversarial training ap-
proach involving an autoencoder consisting of a pre-trained
generator and a discriminator network to produce static re-
constructions of dynamic scans. This approach is further
extended to work in a real-world setting using Unsupervised
Domain Adaptation. Furthermore, the authors also intro-
duce a variation that enhances the quality of reconstruction
by integrating segmentation information into the process.

MOVES Kumar et al. [6] employs a GAN-based adver-
sarial model that segments out movable and moving objects
in LiDAR scans. The network consists of a generator and
a discriminator, that is coupled with a contrastive loss on
a LiDAR scan triplet using hard-negative mining. The au-
thors also introduce an approach that integrates Unsuper-
vised Domain Adaptation into the network for datasets lack-
ing static-dynamic correspondence. This method integrates
the domain discrepancy loss between paired and unpaired
latent space domains.

5. LiDAR Reconstruction Evaluation Metrics

We evaluate the difference between model reconstructed

static and ground truth static LIDAR scan using the follow-

ing metrics.

* CD: Chamfer Distance tries to capture the average mis-
match between points in two given point clouds S;, S; €

R3 and is given by:
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* JSD: Jenson Shannon Divergence is a measure of the dis-
tance between two empirical distributions P and @), de-
fined as follows.

1
JSD(P||Q) = 5(D(P[IM) + D(Q||M))
where M = (P + Q) and D(:||-) represents the
Kullback-Leibler-divergence between the two marginal
distributions B

* MMD: Suppose x € S; and y € S; and ¢ is a func-

tion used to map the data to a Reproducing Kernel Hilbert

Space (RKHS). The Minimal Matching Distance is ap-
proximated as follows.

dyvp(Si, Si)

Z i Z ¢(y)
‘ y€ES,;

€S;

* RMSE: The Root Mean Squared Error between S; and
S, is given by

Nl

RMSE(S;,S;) = (MSE(S;, 5;))

where MSE(S;,S;) = > (zfy‘)Q andy € S;

. z€S; 15
« EMD: If S;,S; € R? have the same size, ie., s =
|Si| = |S;| the Earth Mover Distance between the two

point clouds is defined as follows.

min ZHJ:— x)||2

¢S_> i xES;

demp(Si, Si)

where ¢ : S; — S is a bijection.

6. Navigation Results using SLAM
6.1. Experimental Setup

We use Google Cartographer [3], a widely known LiDAR-
based SLAM algorithm, to test the LiDAR sequences for
navigation. We use an Intel Core i5 processor with 16 GB
RAM running ROS Noetic Distribution.

We also evaluate our work against a recent, popular
LiDAR-based SLAM algorithm - KISS-ICP [11]. We show
the results in segmentation-devoid baseline (Column 4) and
the segmentation assisted baseline (Column 5) in Table 3.
We provide the translation error(ATE) on a set of seven
sparse version of seven KITTI sequences in Table 3. These
sequences have significant variation across the scenes they
navigate and are longer.



6.2. Datasets

(a) KITTI Odometry dataset [2] is a 64-beam LiDAR
dataset. It has 11 sequences with ground truth poses. For
SLAM, we test GLiDR on all the ten sequences.

(b) ARD-16 is a 16-beam industrial dataset collected us-
ing an UGV. We follow the SLAM protocol mentioned at
Kumar et al. [4] and test on the available single SLAM se-
quence.

(¢) CARLA-64 is an extensive simulated 64-beam urban
dataset with correspondence information. Is has four avail-
able SLAM sequnences with ground truth poses. We use
these sequences for navigation.

6.2.1 Baselines

We use the augmented points generated by GLiDR along
the static LIDAR backbone to assist navigation. We study
the performance of GLiDR against segmentation-assisted
and devoid baselines in sparse and dense settings.

GLiDR always works in label-devoid settings. To show
its benefits over segmentation-assisted navigation, we use
segmentation labels to remove dynamic objects from KITTI
sequences before using them for SLAM. We call this base-
line - KITTI-Seg. We compare the SLAM performance of
KITTI-Seg with GLiDR in Table 2. For segmentation-free
settings, we use the best baseline from Table 1 in the main
paper for SLAM and compare the results against GLiDR in
Table 4. We also evaluate GLiDR against the original dy-
namic LiDAR scans on SLAM in Table 4 and Section 6.3.2.

6.3. SLAM Evaluation Metrics

We evaluate the difference between pose estimates gen-
erated using model-reconstructed static and ground truth
static LIDAR scans using the following metrics.

e ATE: Absolute Trajectory Error is used for measuring
the overall global consistency between two trajectories by
measuring the difference between the translation compo-
nents of the two trajectories. The two trajectories spec-
ified in arbitrary coordinate frames are aligned in closed
form. Subsequently, the absolute trajectory error matrix
at time 7 is defined as E; := Q;ISPi, where S is the
rigid-body transformation using the least squares solution
that maps P (the estimated trajectory) onto Q (the ground
truth trajectory). The ATE is defined as the root mean
square error from error matrices over all indices of time.

i=1

1
1 n 2

ATE == t E,)|?
RMSE (n Y~ ||trans(E;)|| >

where trans(E;) refers to the translational components
of the absolute trajectory error matrix E;

¢ RPE: Relative Pose Error, similar to the ATE, measures
the pose error between estimated and ground truth trajec-
tories. It quantifies the local accuracy of the trajectory
over a fixed time interval §. The relative pose error at
time step ¢ is defined as follows.

E; = (P;'Pis) ' (Q; 'Qivs)

The RMSE over all time indices is computed for the trans-
lational and rotational components as follows.

1 m 2
RPFEirans = (m Z |trans(Ei)||2>

=1

1 m
PE,ot = | — t(E;)||?
RPE, <m;||m< >||>

For further information on these metrics, please refer to
Sturm et al., [9]

6.3.1 Comparison with Segmentation-based Baselines

KITTI has segmentation information available. We com-
pare GLiDR against the segmentation-based KITTI base-
line - KITTI-Seg. It uses segmentation information to re-
move dynamic points from LiDAR sequences before nav-
igation. We also compare GLiDR against the original dy-
namic LiDAR sequences of all three datasets in Table 2 and
Figure 3. GLiDR performs better than both methods by a
fair margin without the assistance of segmentation labels for
almost every sequence of KITTI and CARLA-64. Our tra-
jectory estimates are on par with or better than KITTI-Seg
as shown in Figure 3. The results demonstrate GLiDR’s
capability to reinforce accurate points along existing static
structures as well as newer points along occluded static
structures by simply following the 0-dim PH based static
backbone. It strengthens our premise that (a) augment-
ing static structures - both visible and occluded with newer
points is superior to existing pre-processing approaches for
SLAM in sparse LiDAR settings and (b) 0-dim PH based
constraint and the LiDAR graph representation are highly
effective at preserving global shape of LiDAR topology
while generating newer static points with high precision.

We notice that for certain sequences, KITTI-Seg has
higher navigation errors compared to the original dynamic
sequences. Our investigation yields the following reasons.
These sequences consist of certain dynamic objects that are
stationary and help navigation. KITTI-Seg removes all dy-
namic objects, which may also include objects that are mov-
able but stationary in the sequence. In such cases, it is
devoid of several stationary points that are available in the
original dynamic sequence. In these scenarios, KITTI-Seg
performs inferior to the original dynamic scans.



Dataset Sparse LIDAR Dense LiDAR
Sequence  QOriginal Dynamic Segmented Out Ours Original Dynamic Segmented Out Ours
RPE Trans RPE Rot RPE Trans RPE Rot RPE Trans RPE Rot RPE Trans RPE Rot RPE Trans RPE Rot RPE Trans RPE Rot
0 1.10 0.060 1.096 0.060 1.1 0.060 1.10 0.060 1.100 0.060 1.10 0.060
1 1.73 0.106 2.047 0.039 1.56 0.039 1.595 0.039 1.542 0.039 1.54 0.039
2 1.48 0.488 1.501 0.049 1.482 0.049 1.549 0.049 1.547 0.049 1.55 0.049
4 114.587 0.008 1.924 0.007 2.06 0.005 2.04 0.005 2.05 0.005 2.04 0.005
5 1.210 0.043 1.214 0.0433 1.21 0.043 1.21 0.043 1.215 0.043 1.21 0.043
KITTI 6 1.66 0.052 1.643 0.052 1.66 0.052 1.655 0.051 1.670 0.052 1.66 0.051
7 1.04 0.057 1.040 0.057 1.04 0.057 1.040 0.0567 1.040 0.057 1.04 0.057
8 53.339 0.109 25.274 0.134 30.85 0.146 46.170 0.107 55.603 0.129 60.09 0.112
9 1.768 0.046 1.768 0.046 1.77 0.046 1.773 0.046 1.773 0.046 1.78 0.048
10 1.366 0.450 1.363 0.045 1.36 0.045 1.355 0.04488 1.363 0.045 1.36 0.045
0 0.099 0.451 - - 0.099 0.446 0.103 0.414 - - 0.083 0.438
1 0.068 0.408 - - 0.057 0.410 0.051 0.451 - - 0.056 0.406
CARLA-64 0100 0547 009 055 0078 0527 - - 0066  0.557
3 0.079 0.204 - - 0.117 0.395 0.137 0.375 - 0.212 0.380
ARD-16 0 0.166 5.07 - - 0.171 4.955 0.178 4.878 - 0.171 4.934

Table 2. GLiDR comparison against segmentation-assisted baseline on KITTI-Seg and against original dynamic LiDAR sequence based

on the RPE metric.

Seq Length GLiDR Best Baseline KITTI-Seg Original

0 4390  7.53 190.67 7.98 7.7
2 4485 1217 292.65 13.57 12.42
5 2750  4.27 152.03 4.41 4.41
6 1091  1.65 126.23 1.67 1.67
7 1111 0.98 85.83 0.9 0.7
8 5149 419 188.5 421 431
9 1599 445 212.24 4.82 4.48

Table 3. ATE numbers with KISS-ICP SLAM algorithm

We notice that for sequences 6,7,9 and 10 in the dense
settings, GLiDR performs equivalent to but not better than
the two settings. We observe that in dense settings, aug-
menting existing static structures that are already dense has
no major impact on navigation. However, augmenting oc-
cluded static structures along the static backbone brings
newer points that are not available in the original scan and
can help navigation. We observe that sequences 6, 7, 9,
and 10 have very few dynamic occlusions (and hence fewer
occluded static structures - 8, 15, 13, 10, respectively), re-
sulting in negligible effect on navigation performance.

A natural question arises: What levels of sparsity can
GLiDR handle? We perform several experiments similar to
Table 2 for KITTI with sparser LiDAR scans - 8-beam and
4-beam scans. The results of the experiments are available
in Table 5 and Section 6.3.3. Our investigations suggest
that high sparsity levels in the above cases destroy the Li-
DAR topology to the extent that 0-dim PH can no longer
recover an accurate backbone of the LiDAR scene. Due to
this, GLiDR navigation results perform poorly against the
original dynamic and the KITTI-Seg baseline. GLiDR does
not perform well with such sparsity.

6.3.2 Comparison with Segmentation Devoid Baseline

We compare the navigation results of GLiDR against the
best baseline for static point augmentation in Table 4, Fig-
ure 3. GLiDR performs extremely well and consistently
outperforms the baseline by a large margin for KITTI and
CARLA-64 datasets in the sparse settings. In Figure 3, we
observe that for the sparse case, the best baseline (blue)
misses the ground-truth trajectory (dotted line) by a heavy
margin. GLiDR is able to navigate accurately and performs
better for most sequences. GLiDR generates consistent
points along the sparse structures by following the static
topology-based backbone unlike the best baseline, which
in the sparse case fails to generate consistent points along
static structures. The 0-dim PH prior ensures that GLiDR
reinforces static structures only along the single connected
component outlined by the static backbone. This allows ac-
curate scan matching using the predicted static points, lead-
ing to better navigation performance. It also performs well
against the baseline in dense settings.

We observe that for the ARD-16 dataset (which only
works in segmentation devoid settings), GLiDR performs
comparable but not better than the original dynamic scan for
navigation in Table 4. The reasons lie in the semantics and
the structure of the ARD-16 dataset. The improvement in
navigation for ARD-16 is marginal in both settings. ARD-
16 is collected in a closed industrial environment, unlike
KITTI and CARLA-64. Every LiDAR scan in the sequence
observes a large part of the navigation environment. Un-
like urban settings, the collected LiDAR scans overlap sig-
nificantly, even at turns. Consecutive scans have sufficient
static points for accurate scan matching despite sparsity,
even in the absence of augmented static points. The static
points introduced by GLiDR do not provide any signifi-
cant improvement to navigation performance. However, the
newly introduced static points along occluded static struc-



Sparse LIDAR Dense LiDAR
Dataset Sequence Best Baseline Ours Best Baseline Ours
RPE Trans RPE Rot RPE Trans RPE Rot RPE Trans RPE Rot RPE Trans RPE Rot

0 1.17 0.059 1.1 0.060 1.10 0.060 1.10 0.060
1 2.07 0.037 1.56 0.039 2.40 0.039 1.54 0.039
2 1.38 0.048 1.48 0.049 1.54 0.049 1.55 0.049
4 1.68 0.006 2.06 0.005 2.04 0.0052 2.04 0.005
5 1.10 0.043 1.21 0.043 1.21 0.043 1.21 0.043
KITTI 6 1.42 0.051 1.66 0.0516 1.64 0.051 1.66 0.051
7 0.93 0.056 1.04 0.057 1.04 0.057 1.04 0.057
8 20.85 0.129 30.85 0.146 33.075 0.071 60.00 0.112
9 1.24 0.045 1.77 0.046 1.77 0.046 1.78 0.048
10 1.01 0.044 1.36 0.045 1.31 0.044 1.36 0.045
0 0.099 0.439 0.099 0.446 0.090 0.414 0.083 0.438
1 0.156 0.411 0.057 0.41 0.065 0.394 0.056 0.406
CARLA-64 2 0.125 0.546 0.099 0.55 0.141 0.553 0.066 0.557
3 0.106 0.397 0.117 0.395 0.110 0.399 0.120 0.393
ARD-16 0 0.170 4.947 0.171 4.955 0.182 4.85 0.171 4.934

Table 4. Navigation performance comparison of GLiDR against the best baseline in segmentation-devoid settings using RPE metric in

sparse and dense settings. For RPE, lower is better.

tures help to generate accurate binary segmentation masks
(Section 6.1.1 in the main paper), which are vital for safe
navigation.

6.3.3 Experiments on more sparse datasets

What level of sparsity can be handled by GLiDR? To an-
swer this question, we perform experiments using more
sparse LiDAR scans - 8 and 4-beam LiDAR dataset and test
them on navigation. We perform experiments with the same
baselines as Table 3 in the main paper - Original Dynamic,
KITTI-Seg. Original Dynamic is the LiDAR range image
without any pre-processing. KITTI-Seg uses segmentation
labels to remove dynamic objects from the LiDAR range
image before using them for navigation. The experiments
are performed using the KITTI dataset. The navigation re-
sults are available in Table 5.

We observe that, unlike 64 and 16 beam cases, for the
more sparse cases (8 and 4-beam), GLiDR does not perform
well on the ATE metric for most of the sequences. ATE is
a strong measure of the global consistency of the predicted
trajectory with the groundtruth. We conclude that with spar-
sity beyond 16 beam LiDAR scans, GLiDR does not out-
perform the existing baselines. Our investigation suggests
that for 8 and 4-beam LiDAR datasets, the 0-dim P#H based
backbone is not able to calculate an accurate global back-
bone and misses many details that were captured in the 16-
beam datasets. We demonstrate these findings in Table 6
and 7. In the figures, column 1 denotes the original LiDAR,
while Column 2, 3, and 4 denotes the 0-dim PH backbone
for 16, 8, and 4 beam LiDAR sparse LiDAR scans, respec-
tively. We observe that while the 16-beam LiDAR backbone
captures the global outline of the static structures accurately,
the 8 and 4-beam LiDAR miss a lot of details and are un-
able to capture the global static LiDAR structure accurately.
This results in insufficient and sub-optimal augmentation of

static points, which translates into inferior navigation per-
formance for 8 and 4 LiDAR beam based scans.
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1 440.63/2.30/0.04 290.35/2.00/0.04 732.18/2.82/0.04 715.32/3.07/0.04 718.71/3.18/0.04 734.16/2.89/0.03
2 113.12/1.75/0.05 29.84/1.52/0.05 223.09/1.40/0.05 273.32/1.67/0.05 252.56/1.65/0.05 303.64/1.34/0.05
4 117.61/2.26/0.01 117.38/2.29/0.01 119.44/2.03/0.01 117.41/2.20/0.01 118.31/2.15/0.01 118.62/2.42/0.003
5 3.15/1.21/0.04 4.69/1.21/0.04 150.11/0.97/0.04 12.16/1.21/0.04 12.12/1.20/0.04 162.72/1.02/0.04
6 22.07/1.66/0.05 13.25/1.66/0.05 132.87/1.38/0.05 80.59/1.66/0.05 61.30/1.70/0.05 134.75/1.54/0.05
7 2.80/1.04/0.06 2.21/1.04/ 0.06 4.95/1.03/0.06 2.04/1.03/0.06 1.59/1.03/0.06 81.92/0.87/0.06
8 106.79/44.14/0.09 157.50/43.88/0.09 202.36/13.22/0.15 195.29/39.43/0.14 164.25/40.34/0.18 200.01/21.36/0.012
9 13.19/1.76/0.05 12.51/1.75/0.05 15.22/1.67/0.05 20.50/1.70/0.05 32.83/1.70/0.05 50.0/1.74/0.05

Table 5. GLiDR comparison against a segmentation-assisted baseline - KITTI-Seg and against original dynamic LiDAR sequence for 8
beam and 4 beam LiDAR scans. Lower is better. GLiDR does not perform better for these sparsity levels.
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Figure 3. SLAM Trajectory comparison of GLiDR for sparse LiDAR scans against segmentation assisted and segmentation devoid baseline.
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Table 6. 0-dim P7H backbone results for several LIDAR scans. View from left to right. Left: Original 16-beam LiDAR scans Second from
left: Backbone for 16-beam LiDAR scan. Third from left: Backbone for 8-beam LiDAR scan. Right: Backbone for 4-beam LiDAR scan.
While the backbone for a 16-beam LiDAR scan is precise and accurate, the backbone for an 8 and 4-beam LIDAR scan misses several
details of the original LiDAR. Thus, GLiDR is unable to handle sparsity levels of 8 and 4-beam LiDAR scans.



Table 7. 0-dim PH backbone results for several LIDAR scans. View from left to right. Left: Original 16-beam LiDAR scans Second from
left: Backbone for 16-beam LiDAR scan. Third from left: Backbone for 8-beam LiDAR scan. Right: Backbone for 4-beam LiDAR scan.
While the backbone for a 16-beam LiDAR scan is precise and accurate, the backbone for 8 and 4-beam LIDAR scan misses several details
of the original LiDAR. Thus, GLiDR is unable to handle sparsity levels of 8 and 4-beam LiDAR scans.
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