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A. PiX Instantiation
Figure 1 shows how one can use PiX in different network
architectures and for different tasks.

B. Difference with Existing Modules
Figure 2 shows visual differences with the existing modules
which aims for accuracy improvement and dynamic pruning
approaches.

C. Computational Complexity
We show how PiX achieves computationally efficient chan-
nel sampling. However, for better understanding, we first
discuss the FLOPs of different kinds of layers.

C.1. Convolution

Consider a convolution layer having N kernels and an input
feature map X ∈ RC×H×W . The size of each kernel can
be given by C × k × k. FLOPs for convolution operation is
determined using Fusion-Multi-Addition (FMA) instructions.
Therefore, the computational demands of a convolution layer
can be given as follows:

#FLOPs = H ×W ×N × C × k ×K (1)

C.2. BatchNorm

The BatchNorm [4] operation is performed per spatial lo-
cation and can be given as X̂ = (X − µ) γσ + β. It can be
implemented in three FLOPs, i.e., first for computing X−µ,
second for γ/σ, and last as FMA with β. In general, σ is
stored as σ2, therefore, it requires to compute square-root of
σ2 to obtain σ. Overall, it takes four FLOPs to implement
a BatchNorm operation per spatial location. Thus, the total
number of FLOPs for a BatchNorm layer can be given as:

#FLOPs = 4× C ×H ×W (2)

Optionally, during inference, BN can be fused with a Conv
operation where convolution is followed by BN, but we
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Figure 1. Embedding the proposed PiX into various standard net-
works for various purposes. (a) Channel Squeezing Mode: we
replace 1 × 1 channel squeezing layers in ResNet [2] with PiX,
where the remaining 1× 1 conv layers in the original ResNet are
untouched as it is intended for expanding channel dimensions. (b
& c) Network Downscaling Mode: We insert PiX modules into
ResNet and VGG [9]. We make the output channel dimension
smaller than the input channel dimension by adjusting sampling
factor ζ in PiX. In other words, depending on ζ, The input and
output channel dimensions of 1× 1 and 3× 3 conv layers change
accordingly. As a result, as ζ gets larger, the channel dimension
of the original network reduces. (c & d) Dynamic Channel Prun-
ing: These configurations are used for comparing PiX with other
dynamic channel pruning approaches.

remain agnostic to such cases to account for the training
phase and other architectures.
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Figure 2. PiX vs existing modules: SE [3], CBAM [10], FBS [1], and Group convolution [6, 11].

C.3. ReLU

A ReLU operation is given by Y = X for X ≥ 0 and Y = 0
for X < 0. It simply requires a comparison instruction,
leading to the total number of FLOPs given by:

#FLOPs = C ×H ×W (3)

C.4. Sigmoid

A Sigmoid operation is given by Y = 1/(1+exp−X). It can be
implemented in four FLOPs. Therefore, the total FLOPs for
a Sigmoid layer can be given by:

#FLOPs = 4× C ×H ×W (4)

C.5. Global pooling

Apart from the above layers, in the PiX module, a global
pooling operation is also performed. There are several ways
to implement a global pooling operation. However, the
most common is by using matrix multiplication routines
and Fused-Multiply-Add (FMA) instructions. The whole
channel of a feature map can be considered as a vector of
size H ×W which can be reduced to a scalar by taking its
dot product with a vector whose all elements are equal to one.
Hence, the total number of FLOPs for the global pooling
operation can be given by:

#FLOPs = C ×H ×W (5)

C.6. Channel Sampling

Channel fusion operates on (C/ζ) subsets, each of ζ chan-
nels. For the Max operation, (ζ − 1) compare instructions,

while for Avg operation, (k − 1) FMA instructions are re-
quired per-location i.e. Γhw. Thus, the total number of
FLOPs for channel sampling can be given by:

#FLOPs = (ζ − 1)× (C/ζ)×H ×W (6)

The computational complexity of the PiX block can be cal-
culated based on the several equations developed above.

D. Computations & Memory Requirements

By using the above equations, we can easily compute the
FLOP overhead of various modules such as SE [3], CBAM
[10], or FBS [1] and demonstrated below:

D.1. SE [3]

Compute

#Global_pool_FLOPs = C ×H ×W (7)
#Conv_Sqz_FLOPs = (C/16)× C (8)

#ReLU_FLOPs = (C/16) (9)
#Conv_Exp_FLOPs = C × (C/16) (10)
#Sigmoid_FLOPs = 4 ∗ C (11)

#Broadcast_Multiply_FLOPs = C ×H ×W (12)

#Total Flops = 2CHW + 0.125C2 + (65/16)C.



Memory

#Global_pool_Mem = C (13)
#Conv_Sqz_Mem = C/16 (14)
#Conv_Exp_Mem = C (15)

#Broadcast_Multiply_Mem = C ×H ×W (16)

#Total Memory = CHW + (33/16)C.
Note: ReLU and Sigmoid are ignored in memory due to

their In-place operations.

D.2. CBAM [10]

Compute

#Global_Max_pool_FLOPs = C ×H ×W (17)
#Global_Avg_pool_FLOPs = C ×H ×W (18)

#Conv_Sqz_FLOPs = (C/16)× C (19)
#ReLU_FLOPs = (C/16) (20)

#Conv_Exp_FLOPs = C × (C/16) (21)
#Sigmoid_FLOPs = 4 ∗ C (22)

#Sum_FLOPs = C (23)
#Broadcast_Multiply_FLOPs = C ×H ×W (24)
#Channel_Max_Pool_FLOPs = (C − 1)×H ×W

(25)

#Channels_Avg_Pool_FLOPs = (C − 1)×H ×W
(26)

#Concat_FLOPs = 2×H ×W (27)
#Conv_FLOPs = 1× 2×H ×W (28)

#Sigmoid_FLOPs = 4× 1×H ×W (29)
#Broadcast_Multiply_FLOPs = C ×H ×W (30)

#Total Flops = 6CHW + 0.125C2 + (81/16)C + 6HW .

Memory

#Global_Max_pool_Mem = C (31)
#Global_Avg_pool_Mem = C (32)

#Conv_Sqz_Mem = C/16 (33)
#Conv_Exp_Mem = C (34)

#Sum_Mem = C (35)
#Broadcast_Multiply_Mem = C ×H ×W (36)
#Channel_Max_Pool_Mem = H ×W (37)
#Channels_Avg_Pool_Mem = H ×W (38)

#Concat_Mem = 2×H ×W (39)
#Conv_Mem = H ×W (40)

#Broadcast_Multiply_Mem = C ×H ×W (41)

#Total Memory = 2CHW + 5HW + (65/16)C.

D.3. FBS [1]

Compute

#Global_pool_FLOPs = C ×H ×W (42)
#Conv_Sqz_FLOPs = C × C (43)
#Sigmoid_FLOPs = 4× C (44)

#Top-k_FLOPs =
∑

i∈[1,k]

(C − i) (45)

#BatchNorm_FLOPs = 4× C ×H ×W (46)
#Broadcast_Multiply_FLOPs = C ×H ×W (47)

#ReLU_FLOPs = C ×H ×W (48)

#Total Flops = 7CHW +C2 +4C +
∑

i∈[1,k](C − i).

Memory

#Global_pool_Mem = C (49)
#Conv_Sqz_Mem = C (50)

#Top-k_Mem = C ×H ×W (51)
#Broadcast_Multiply = C ×H ×W (52)

#Total Memory = 2CHW + 2C.
Note: In memory, BatchNorm is ignored due to its In-

place operations.

D.4. PiX

Compute

#Global_pool_FLOPs = C ×H ×W (53)
#Conv_Sqz_FLOPs = (C/ζ)× C (54)
#Sigmoid_FLOPs = 4 ∗ (C/ζ) (55)

#Chanl_Fusion_FLOPs = (ζ − 1)× (C/ζ)×H ×W
(56)

#Total Flops = CHW+C2

ζ +4(C/ζ)+((ζ−1)/ζ)CHW .
#Total Flops(@ζ = 1) = CHW + C2 + 4C.

Memory

#Global_pool_Mem = C (57)
#Conv_Sqz_Mem = C/ζ (58)

#Channel Fusion Mem = C ×H ×W (59)

#Total Memory = CHW + ((1 + ζ)/ζ)C.
From the above equations, it can be seen that PiX has

the lowest FLOPs and Memory required compared to all the
approaches. Values are highlighted in Table 1.
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Figure 3. Flops and Memory performance of PiX in contrast to SE [3] CBAM [10], and FBS [1] per-instance of a module. In the memory
plot, SE and PiX has almost same overhead but PiX lesser than SE in terms of Bytes (∼ 1,000), and same is with CBAM and FBS. For this
reason plots are overlapping in the memory plot. The actual values are also highlighted in Table 1.

Table 1. This table shows FLOPs and memory usage per instance
of different modules corresponding to Figure 3. These values are
computed at different heights and widths of the tensor. It can be
seen that PiX has the lowest FLOP overhead and also requires less
memory, equivalent to SE [3] but half of CBAM [10] and FBS [1].

@R512×112×112

Method #FLOPs (M) #Memory (MB)

SE [3] 12.8 25.694336
CBAM [10] 38.6 51.639424
FBS [1] 45.2 51.384320
PiX 6.6 25.694208

@R512×56×56

Method #FLOPs (M) #Memory (MB)

SE [3] 3.2 6.426752
CBAM [10] 9.6 12.916096
FBS [1] 11.5 12.849152
PiX 1.8 6.426624

@R512×28×28

Method #FLOPs (M) #Memory (MB)

SE [3] .837 1.609856
CBAM [10] 2.4 3.235264
FBS [1] 3.0 3.215360
PiX 0.6 1.609728

E. Computation Reduction by PiX in Channels
Squeezing i.e. ζ > 1

In the baseline method, the squeeze layer operates upon
X ∈ RC×H×W which requires C/ζ × C ×H ×W FLOPs.
Whereas in PiX, the global context aggregation requires
C × H × W FLOPs, cross-channel information blending
requires C/ζ ×C FLOPs. and channel fusion requires C/ζ ×
(ζ − 1)×H ×W FLOPs.

As an example, consider an input tensor X ∈ R12×5×5

to a squeeze layer kernels of size 1 × 1. With ζ = 4, the
number of subsets becomes 12/ζ = 3. From the equations
discussed, the total number of FLOPs for a squeeze layer
equals 1,275.

#Conv_FLOPs = 5× 5× 3× 12× 1× 1 = 900 (60)
#BN_FLOPs = 4× 3× 5× 5 = 300 (61)

#ReLU_FLOPs = 3× 5× 5 = 75 (62)

On the other hand, the FLOPs for the PiX module with ζ = 4
equals only 811, as described below.

#Pooling_FLOPs = 12× 5× 5 = 300 (63)
#Conv_FLOPs = 1× 1× 3× 12× 1× 1 = 36

(64)

#Sigmoid_FLOPs = 4× 3× 1× 1 = 12 (65)
#Sampling_FLOPs = 3× 3× 5× 5 = 225 (66)

In the above example, the baseline squeezing method re-
quires 1,275 FLOPs, whereas PiX requires only 523 and 748
FLOPs for PiX and w-PiX fusion strategy respectively. In a
similar manner, we achieve huge gains when PiX is plugged
into the existing networks, which have been discussed in the
experiments section of the paper.

F. Effect of Pick-or-Mix on Memory in Channel
Squeezing

Despite the computational benefits, PiX does not introduce
any memory overhead. The total memory required by the



Table 2. Ablation study of ResNet-50 + PiX@ζ = 4. Top-1
Accuracy on ImageNet.

Ablation Parameter Top-1 Accuracy

E0 Fusion Activation Sigmoid 76.77%
TanH 76.39%

E1 Batch-Norm ✗ 76.77%
✓ 76.44%

E2 τ
0.0 76.58%
0.5 76.77%
1.0 76.54%

E3 Operator

Min 74.68%
Max 76.57%
Avg 76.58%

Max+Avg 76.77%

baseline squeeze operation with ζ = 4 can be given by:
#M = C/4 × H × W . On the other hand, the memory
required for PiX is given by: #M = C + C/4 + C/4 ×
H × W . We can see that there is a negligible increment
in the memory footprint, i.e., from 0.75 × C ×H ×W to
0.75× C ×H ×W + 1.25C. For FP32 precision, the raw
memory footprint will be 4×M .

G. Ablation Study
We empirically validate Pick-or-Mix design practices using
the most pertinent ablations possible. ResNet-50 is adopted
as the baseline for this purpose, and channel squeezing mode.
To begin with, we first analyze the effect of changing the
activation function in the cross-channel information blending
stage and then examine the effect of placing a BatchNorm
prior to the sigmoidal activation. Further, we verify the
behavior of proposed channel fusion strategies and also the
effect of varying fusion threshold τ .

E0: Fusion Activation. The channel fusion stage utilizes
the sampling probability p. Given that the value of p lies in
the interval [0, 1], we wish to examine the behavior of PiX
if this range is achieved via a different activation function.
For this purpose, we select TanH function which natively
squeezes the input into a range [−1, 1]. Therefore, we rewrite
the mathematical expression to 0.5× (1+TanH) in order to
place the output of TanH into the desired range of [0, 1]. We
replace the sigmoidal activation with the above expression
and retrain the network. From Table 2, it can be seen that
sigmoidal activation outperforms the TanH activation for
the case of PiX.

E1: BatchNorm in Global Context Aggregation. Out
of curiosity, we also analyze the behavior of PiX module
by placing a BatchNorm [4] after the sampling probability
predictor because the squeeze layer in the baseline method
is also followed by a BatchNorm layer. We observe that
BatchNorm negatively impacts performance.

E2: Effect of Fusion Threshold (τ ). The hyperparam-
eter τ is evaluated against three values ∈ {0.0, 0.5, 1.0}.
In accordance with Eq. 2 of the main manuscript, τ = 0
corresponds to Max operator, τ = 1.0 corresponds to Avg
operator regardless of the value of p. Whereas τ = 0.5
offers equal opportunity to the Max and Avg fusion oper-
ators which are adaptively taken care of by the value of p.
We present an ablation over the aforementioned three val-
ues of τ . From Table 2, we observe that τ = 0.5 results
in best performance, which is the case when the network
has the flexibility to choose from both reduction operators
adaptively. Hence, in the experiments, we use τ = 0.5 for
threshold-based fusion.

E4: Effect of Operator Type. We also experiment for
operator Min other than Max and Avg. We found out that
Min performs severely worse. This justifies our choice of
operators and is in line with the performance achieved by
using the pooling operation when they are used spatially.

H. Role of Fusion Probability
We analyze the sampling probabilities across all classes in
the ImageNet validation set for ResNet-50 + PiX @ζ = 2
for the last block of each stage (Figure 4).

It can be seen that the importance of probability is sig-
nificant since distribution for the fusion operator selection
is variable, i.e., while training, the network does not bias
towards only one type of fusion operator, indicating that
both of the fusion operators are crucial. In the deeper layers
(stage-5), the variance starts increasing, indicating deeper
layers are class-specific and need different activation distri-
butions. This is in line with [3]. Moreover, we notice that,
unlike [3], none of the layers in the stage-5 show satura-
tion. This is also an indication that PiX naturally pushes a
convolution layer to learn more complex representation.

I. GradCAM Visualization
The performance of PiX, especially in the channel squeezing
mode, inspires us to analyze how PiX attends the spatial
regions relative to the baseline. It explains qualitatively
the improved performance of PiX despite the reduction in
FLOPs. We use GradCAM [8] for this purpose.

Figure 5 shows the analysis for ResNet and VGG. Notice-
ably, PiX shows improvement in the attended regions of a
target class relative to the baseline (R-I2, V-I4). Also, in im-
ages with multiple instances, PiX focuses on each instance
strongly (R-I4, V-I2), indicating that PiX enhances network’s
generalization by learning to emphasize class-specific parts.

J. GPU Deployment for Pick-or-Mix
The implementation of PiX is quite straightforward and fully
parallelizable. The sampling probability and output feature
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Figure 4. Sampling probability at different stages of ResNet-50 + PiX. Stage named as: PiX_STAGE_ID_BLOCK_ID [2].
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map computations are parallelizable because they are point-
wise operations.

PiX can be implemented directly with the fundamental
operators of Pytorch [7]. However, since we perform op-
erations over each subset and each location independently,
therefore, PiX requires merely 10− 15 lines of NVIDIA’s
CUDA kernel code or any other parallelization paradigm.

K. Codes and Implementation

The code and the pre-trained models are open-sourced in
PyTorch [7]. See below for Python and CUDA snippets.

L. Training Specifications.
The training procedure is kept standard to ensure repro-
ducibility. We use a batch size of 256, which is split
across 8 GPUs. We use a RandomResized crop [7] of
224×224 pixels, along with a horizontal flip. We use SGD
with Nesterov momentum of 0.9, base_lr=0.1 with
CosineAnnealing [5] rate scheduler and a weight decay of
0.0001. Unless otherwise stated, all models are trained from
scratch for 120 epochs following [2].



1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import pix_layer_cuda
5 import math
6

7 # gradients in the backward are received in the order of tensor as they were output in forward function
8 class PiXOperator(torch.autograd.Function):
9 @staticmethod

10 def forward(ctx, zeta: int, tau: float, input: torch.Tensor, fusion_prob: torch.Tensor):
11 outputs = pix_layer_cuda.forward(zeta, tau, input, fusion_prob)
12 ctx.save_for_backward(input, fusion_prob)
13 ctx.zeta = zeta
14 ctx.tau = tau
15 return outputs[0]
16

17 @staticmethod
18 def backward(ctx, out_grad):
19 input, fusion_prob = ctx.saved_tensors
20 zeta = ctx.zeta
21 tau = ctx.tau
22 input_grad, fusion_prob_grad = pix_layer_cuda.backward(zeta, tau, input, fusion_prob, out_grad)
23 return None, None, input_grad, fusion_prob_grad
24

25

26 class PiXOperatorLayer(torch.nn.Module):
27 def __init__(self, zeta, tau = 0.5):
28 super(PiXOperatorLayer, self).__init__()
29 self.zeta = int(zeta)
30 self.tau = tau
31

32 def forward(self, input, fusion_prob):
33 return PiXOperator.apply(self.zeta, self.tau, input, fusion_prob)
34

35 class PiXLayer(torch.nn.Module):
36 def __init__(self, n_ip, zeta, tau=0.5):
37 super(PiXLayer, self).__init__()
38

39 n_op = math.ceil(float(n_ip) / zeta)
40 self.conv1x1 = torch.nn.Conv2d(n_ip, n_op, 1)
41

42 self.pix = PiXLayer(zeta, tau)
43 self.global_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
44 self.sigmoid_sqz = torch.nn.Sigmoid()
45

46 def forward(self, x):
47 global_pool = self.global_pool(x)
48 conv_g_pool = self.conv1x1(global_pool)
49 sos_likelihood = self.sigmoid_sqz(conv_g_pool)
50 x = self.pix.forward(x, sos_likelihood)
51 return x
52

53

54

55 #### USAGE
56

57 n_ip = 24
58 zeta = 4
59 pix = PiXLayer(n_ip, zeta)
60 X = torch.ones([1, n_ip, 4, 4])
61 Y = pix(X)
62 print(X)
63 print(Y)



1 #include <torch/extension.h>
2 #include <ATen/cuda/CUDAContext.h>
3 #include <ATen/ops/matmul.h>
4

5 #include <vector>
6 #include<iostream>
7

8 const int MAX_THREADS_PER_BLOCK = 512;
9

10 template <typename Dtype>
11 __global__ void PiX_Forward_cuda_kernel(const int n_threads,
12 int out_channels, int in_channels,
13 int height, int width,
14 int k_size,
15 float TAU,
16 const Dtype* __restrict__ bottom_data,
17 const Dtype* __restrict__ prob_data,
18 Dtype* __restrict__ top_data)
19 {
20 int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
21 if(thread_idx < n_threads)
22 {
23 unsigned int n = thread_idx / (out_channels*height*width);
24 unsigned int c = (thread_idx / (height*width)) % out_channels;
25 unsigned int h = (thread_idx / (width)) % height;
26 unsigned int w = thread_idx % width;
27

28 Dtype prob = prob_data[n*out_channels+c];
29

30 int c_start = c * k_size;
31 int c_end = c_start + k_size;
32 if(c_end > in_channels)
33 c_end = in_channels;
34

35 if(prob < TAU)
36 {
37 Dtype max_val = -FLT_MAX;
38

39 for(int ch = c_start; ch < c_end; ch++)
40 {
41 unsigned long int bottom_index = ((n*in_channels+ch)*height+h)*width+w;
42

43 Dtype bottom_val = bottom_data[bottom_index];
44 if(max_val < bottom_val)
45 {
46 max_val = bottom_val;
47 }
48 }
49

50 top_data[thread_idx] = prob * max_val;
51 }
52 else
53 {
54 Dtype avg_val = 0;
55

56 for(int ch = c_start; ch < c_end; ch++)
57 {
58 unsigned long int bottom_index = ((n*in_channels+ch)*height+h)*width+w;
59

60 avg_val += bottom_data[bottom_index];
61 }
62

63 top_data[thread_idx] = (prob) * avg_val / k_size;
64

65 }
66 }
67 }
68

69

70 template <typename Dtype>
71 __global__ void PiX_Backward_cuda_kernel(const int n_threads,
72 int out_channels, int in_channels,
73 int height, int width,
74 int k_size,
75 float TAU,
76 const Dtype* __restrict__ bottom_data,
77 const Dtype* __restrict__ top_diff,
78 const Dtype* __restrict__ prob_data,
79 Dtype* __restrict__ prob_diff,



80 Dtype* __restrict__ bottom_diff)
81 {
82 int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
83 if(thread_idx < n_threads)
84 {
85

86 unsigned int n = thread_idx / (out_channels*height*width);
87 unsigned int c = (thread_idx / (height*width)) % out_channels;
88 unsigned int h = (thread_idx / (width)) % height;
89 unsigned int w = thread_idx % width;
90

91 Dtype prob = prob_data[n*out_channels+c];
92

93 int c_start = c * k_size;
94 int c_end = c_start + k_size;
95 if(c_end > in_channels)
96 c_end = in_channels;
97

98

99 if(prob < TAU)
100 {
101 Dtype max_val = -FLT_MAX;
102 int max_idx = c_start;
103

104 for(int ch = c_start; ch < c_end; ch++)
105 {
106 unsigned long int bottom_index = ((n*in_channels+ch)*height+h)*width+w;
107

108 Dtype bottom_val = bottom_data[bottom_index];
109 if(max_val < bottom_val)
110 {
111 max_val = bottom_val;
112 max_idx = ch;
113 }
114 }
115

116 Dtype top_diff_val = top_diff[thread_idx];
117

118 for(int ch = c_start; ch < c_end; ch++)
119 {
120 if(ch == max_idx)
121 bottom_diff[((n*in_channels+ch)*height+h)*width+w] = prob * top_diff_val;
122 else
123 bottom_diff[((n*in_channels+ch)*height+h)*width+w] = 0;
124 }
125

126 prob_diff[((n*out_channels+c)*height+h)*width+w] = max_val * top_diff_val;
127 }
128 else
129 {
130 Dtype top_diff_val = top_diff[((n*out_channels+c)*height+h)*width+w];
131 Dtype avg_val = 0;
132

133 for(int ch = c_start; ch < c_end; ch++)
134 {
135 bottom_diff[((n*in_channels+ch)*height+h)*width+w] = (prob) * top_diff_val / k_size;
136 avg_val += bottom_data[((n*in_channels+ch)*height+h)*width+w];
137 }
138

139 avg_val /= k_size;
140

141 prob_diff[((n*out_channels+c)*height+h)*width+w] = top_diff_val * avg_val;
142

143 }
144 }
145 }
146

147

148

149

150

151 std::vector<torch::Tensor> PiX_cuda_forward(
152 const int k_size,
153 float TAU,
154 torch::Tensor input,
155 torch::Tensor sampling_prob)
156 {
157

158 int n = input.size(0);



159 int in_c = input.size(1);
160 int h = input.size(2);
161 int w = input.size(3);
162

163 int out_c = ceil((float)in_c / k_size);
164

165 torch::Tensor output = torch::zeros({n, out_c, h , w}, input.options());
166

167 const int n_threads = n * out_c * h * w;
168

169 const dim3 blocks((n_threads - 1) / MAX_THREADS_PER_BLOCK + 1, 1, 1);
170

171 c10::cuda::CUDAStream stream = c10::cuda::getCurrentCUDAStream();
172

173 AT_DISPATCH_FLOATING_TYPES(output.type(), "PiX_cuda_forward", ([&] {
174 PiX_Forward_cuda_kernel<scalar_t><<<blocks, MAX_THREADS_PER_BLOCK,0,stream>>>(
175 n_threads,
176 out_c, in_c,
177 h, w,
178 k_size,
179 TAU,
180 (scalar_t*)input.data_ptr(),
181 (scalar_t*)sampling_prob.data_ptr(),
182 (scalar_t*)output.data_ptr());
183 }));
184

185

186 return {output};
187 }
188

189 std::vector<torch::Tensor> PiX_cuda_backward(
190 const int k_size,
191 float TAU,
192 torch::Tensor input,
193 torch::Tensor sampling_prob,
194 torch::Tensor output_grad)
195 {
196 int n = input.size(0);
197 int in_c = input.size(1);
198 int h = input.size(2);
199 int w = input.size(3);
200

201 int out_c = ceil((float)in_c / k_size);
202

203 torch::Tensor input_grad = torch::zeros_like(input);
204 torch::Tensor sampling_prob_grad = torch::zeros_like(output_grad);
205

206 const int n_threads = n * out_c * h * w;
207

208 const dim3 blocks((n_threads - 1) / MAX_THREADS_PER_BLOCK + 1, 1, 1);
209

210 c10::cuda::CUDAStream stream = c10::cuda::getCurrentCUDAStream();
211

212 AT_DISPATCH_FLOATING_TYPES(output_grad.type(), "PiX_cuda_backward", ([&] {
213 PiX_Backward_cuda_kernel<scalar_t><<<blocks, MAX_THREADS_PER_BLOCK,0,stream>>>(
214 n_threads,
215 out_c, in_c,
216 h, w,
217 k_size,
218 TAU,
219 (scalar_t*)input.data_ptr(),
220 (scalar_t*)output_grad.data_ptr(),
221 (scalar_t*)sampling_prob.data_ptr(),
222 (scalar_t*)sampling_prob_grad.data_ptr(),
223 (scalar_t*)input_grad.data_ptr()
224 );
225 }));
226

227 torch::Tensor ones = torch::ones({h*w, 1}, input.options());
228 sampling_prob_grad = sampling_prob_grad.reshape({n*out_c, h*w});
229

230 torch::Tensor sampling_prob_grad_reduced = at::matmul(sampling_prob_grad, ones);
231 sampling_prob_grad_reduced = sampling_prob_grad_reduced.reshape({n,out_c, 1,1});
232

233

234 return {input_grad, sampling_prob_grad_reduced};
235 }
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