
SeaBird: Segmentation in Bird’s View with Dice Loss Improves
Monocular 3D Detection of Large Objects

Supplementary Material

Contents
A1. Additional Explanations and Proofs 13

A1.1. Proof of Converged Value 13
A1.2. Comparison of Loss Functions 14

A1.2.1 Gradient Variance of MAE Loss . . 14
A1.2.2 Gradient Variance of MSE Loss . . 14
A1.2.3 Gradient Variance of Dice Loss.

(Proof of Lemma 2) 14
A1.3. Proof of Lemma 3 15
A1.4. Proof of Theorem 1 15
A1.5. Properties of Dice Loss. 15
A1.6. Notes on Theoretical Result 16
A1.7. More Discussions 17

A2. Implementation Details 17

A3. Additional Experiments and Results 18
A3.1. KITTI-360 Val Results 18
A3.2. nuScenes Results 19
A3.3. Qualitative Results 19

A4. Acknowledgements 19

A1. Additional Explanations and Proofs
We now add some explanations and proofs which we could
not put in the main paper because of the space constraints.

A1.1. Proof of Converged Value

We first bound the converged value from the optimal value.
These results are well-known in the literature [44, 85]. We
reproduce the result from using our notations for complete-
ness.

E
(∥∥Lw∞−w∗

∥∥2
2

)
= E

(∥∥Lw∞−Lµ+ Lµ−w∗
∥∥2
2

)
= E

((Lw∞−Lµ+ Lµ−w∗
)T (Lw∞−Lµ+ Lµ−w∗

))
= E((Lw∞−Lµ)T (Lw∞−Lµ)) + E((Lµ−w∗)

T (Lµ−w∗))

+ 2E((Lw∞−Lµ)T (Lµ−w∗))

= Var(Lw∞) + E((Lµ−w∗)
T (Lµ−w∗)) (5)

where Lµ = E(Lw∞) is the mean of the layer weight and
Var(w) denotes the variance of

∑
j w

2
j .

SGD. We begin the proof by writing the value of Lwt at
every step. The model uses SGD, and so, the weight Lwt

after t gradient updates is

Lwt = w0 − s1
Lg1 − s2

Lg2 − · · · − st
Lgt, (6)

where Lgt denotes the gradient of w at every step t. As-
sume the loss function under consideration L is L =
f(wth− z) = f(η). Then, we have,

Lgt =
∂L
∂wt

=
∂L(wth− z)

∂wt

=
∂L(wth− z)

∂(wth− z)

∂(wth− z)

∂wt

=
∂L(η)
∂η

h

= h
∂L(η)
∂η

=⇒ Lgt = hϵ, (7)

with ϵ =
∂L(η)
∂η

is the gradient of the loss function wrt

noise.
Expectation and Variance of Gradient Lgt Since the im-
age h and noise η are statistically independent, the image
and the noise gradient η are also statistically independent.
So, the expected gradients

E(Lgt) = E(h)E(ϵ) = 0. (8)

Note that if the loss function is an even function (sym-
metric about zero), its gradient ϵ is an odd function (anti-
symmetric about 0), and so its mean E(ϵ) = 0.

Next, we write the gradient variance Var(Lgt) as

Var(Lgt) = Var(hϵ) = E(hTh)E(ϵ2)− E2(h)E2(ϵ)

= E(hTh)
[
Var(ϵ) + E2(ϵ)

]
− E2(h)E2(ϵ)

=⇒ Var(Lgt) = E(hTh)Var(ϵ) as E(ϵ) = 0 (9)

Expectation and Variance of Converged Weight Lwt We
first calculate the expected converged weight as

E(Lwt) = E(w0) +

 t∑
j=1

sjE
(Lgj

) , using Eq. (6)

= 0 using Eq. (8)

13

=⇒ E(Lw∞) = lim
t→∞

E(Lwt)

=⇒ E(Lw∞) = Lµ = 0 (10)

We finally calculate the variance of the converged
weight. Because the SGD step size is independent of the
gradient, we write using Eq. (6),

Var(Lwt) = Var(w0) + s21Var (g1) + s22Var (g2)

+ · · ·+ s2tVar
(Lgt

)
(11)

Assuming the gradients Lgt are drawn from an identical
distribution, we have

Var(Lwt) = Var(w0) +

 t∑
j=1

s2j

Var
(Lgt

)
=⇒ Var(Lw∞) = lim

t→∞
Var(Lwt)

= Var(w0) +

 lim
t→∞

t∑
j=1

s2j

Var
(Lgt

)
=⇒ Var(Lw∞) = Var(w0) + sVar

(Lgt

)
(12)

An example of square summable step-sizes of SGD is sj =
1
j , and then the constant s =

∑
j=1

s2j = π2

6 . This assump-

tion is also satisfied by modern neural networks since their
training steps are always finite.

Substituting Eq. (9) in Eq. (12), we have

Var(Lw∞) = Var(w0) + sE(hTh)Var(ϵ) (13)

Substituting mean and variances from Eqs. (10) and (13) in
Eq. (5), we have

E
(∥∥Lw∞−w∗

∥∥2
2

)
= Var(w0) + sE(hTh)Var(ϵ)

+ E(||w∗||2)
= sE(hTh)Var(ϵ) + Var(w0)

+ E(||w∗||2)

=⇒ E
(∥∥Lw∞−w∗

∥∥2
2

)
= c1Var(ϵ) + c2, (14)

where ϵ =
∂L(η)
∂η

is the gradient of the loss function wrt

noise, and c1 = sE(hTh) and c2 are terms independent of
the loss function L.

A1.2. Comparison of Loss Functions

Eq. (1) shows that different losses L lead to different Var(ϵ).
Hence, comparing this term for different losses asseses the
quality of losses.

A1.2.1 Gradient Variance of MAE Loss

The result on MAE (L1) is well-known in the literature
[44, 85]. We reproduce the result from [44, 85] using our
notations for completeness.

The L1 loss is

L1(η) = |ẑ − z|1 = |Lwth− z|1 = |η|1

=⇒ ϵ =
∂L1(η)

∂η
= sgn(η) (15)

Thus, ϵ = sgn(η) is a Bernoulli random variable with
p(ϵ) = 1/2 for ϵ = ±1. So, mean E(ϵ) = 0 and variance
Var(ϵ) = 1.

A1.2.2 Gradient Variance of MSE Loss

The result on MSE (L2) is well-known in the literature
[44, 85]. We reproduce the result from [44, 85] using our
notations for completeness. The L2 loss is

L2(η) = 0.5|ẑ − z|2 = 0.5|η|2 = 0.5η2

=⇒ ϵ =
∂L2(η)

∂η
= η (16)

Thus, ϵ = η is a normal random variable [85]. So, mean
E(ϵ) = 0 and variance Var(ϵ) = Var(η) = σ2.

A1.2.3 Gradient Variance of Dice Loss. (Proof of
Lemma 2)

Proof. We first write the gradient of dice loss as a function
of noise (η) as follows:

ϵ =
∂Ldice(η)

∂η
=

sgn(η)

ℓ
, |η| ≤ ℓ

0 , |η| ≥ ℓ
(17)

The gradient of the loss ϵ is an odd function and so, its mean
E(ϵ) = 0. Next, we write its variance Var(ϵ) as

Var(ϵ) = Var(η) =
1

ℓ2

ℓ∫
−ℓ

1√
2πσ

e−
η2

2σ2 dη

=
2

ℓ2

ℓ∫
0

1√
2πσ

e−
η2

2σ2 dη

=
2

ℓ2

ℓ/σ∫
0

1√
2π

e−
η2

2 dη

=
2

ℓ2

 ℓ/σ∫
−∞

1√
2π

e−
η2

2 dη − 1

2

=
2

ℓ2

[
Φ

(
ℓ

σ

)
− 1

2

]
(18)

where, Φ is the normal CDF

We write the CDF Φ(x) in terms of error function Erf as:

Φ(x) =
1

2
+

1

2
Erf
(

x√
2

)
(19)

for x ≥ 0. Next, we put x =
ℓ

σ
to get

Φ

(
ℓ

σ

)
=

1

2
+

1

2
Erf
(

ℓ√
2σ

)
(20)

Substituting above in Eq. (18), we obtain

Var(ϵ) =
2

ℓ2

[
1

2
+

1

2
Erf
(

ℓ√
2σ

)
− 1

2

]
=⇒ Var(ϵ) =

1

ℓ2
Erf
(

ℓ√
2σ

)
(21)

A1.3. Proof of Lemma 3

Proof. It remains sufficient to show that

E
(∥∥dw∞ −w∗

∥∥
2

)
≤ E (∥rw∞ −w∗∥2)

=⇒ E
(∥∥dw∞ −w∗

∥∥2
2

)
≤ E

(
∥rw∞ −w∗∥22

)
(22)

Using Lemma 1, the above comparison is a comparison be-
tween the gradient variance of the loss wrt noise Var(ϵ).
Hence, we compute the gradient variance of the loss L, i.e.,
Var(ϵ) of regression and dice losses to derive this lemma.
Case 1 σ ≤ 1: Given Tab. 1, if σ ≤ 1, the minimum de-
viation in converged regression model comes from the L2

loss. The difference in the estimates of regression loss and
the dice loss

E
(
∥rw∞ −w∗∥22

)
− E

(∥∥dw∞ −w∗
∥∥2
2

)
∝ σ2 − 1

ℓ2
Erf
(

ℓ√
2σ

)
(23)

Let σm be the solution of the equation σ2 =
1

ℓ2
Erf
(

ℓ√
2σ

)
. Note that the above equation has unique

solution σm since σ2 is a strictly increasing function wrt

σ for σ > 0, while
1

ℓ2
Erf
(

ℓ√
2σ

)
is a strictly decreasing

function wrt σ for σ > 0. If the noise has σ ≥ σm, the RHS
of the above equation ≥ 0, which means dice loss converges
better than the regression loss.
Case 2 σ ≥ 1: Given Tab. 1, if σ ≥ 1, the minimum devia-
tion in converged regression model comes from the L1 loss.
The difference in the regression and dice loss estimates:

E
(
∥rw∞ −w∗∥22

)
− E

(∥∥dw∞ −w∗
∥∥2
2

)

∝ 1− 1

ℓ2
Erf
(

ℓ√
2σ

)
(24)

If the noise has σ ≥
√
2

ℓ
Erf−1(ℓ2), the RHS of the above

equation ≥ 0, which means dice loss is better than the re-
gression loss. For objects such as cars and trailers which
have length ℓ > 4m, this is trivially satisfied.

Combining both cases, dice loss outperforms the L1 and
L2 losses if the noise deviation σ exceeds the critical thresh-
old σc, i.e.

σ > σc = max

(
σm,

√
2

ℓ
Erf−1(ℓ2)

)
. (25)

A1.4. Proof of Theorem 1

Proof. Continuing from Lemma 3, the advantage of the
trained weight obtained from dice loss over the trained
weight obtained from regression losses further results in

Var(dw∞) ≤ Var(rw∞)

=⇒ E(|dw∞h− z|) ≤ E(|rw∞h− z|)
=⇒ E(| dẑ − z|) ≤ E(| r ẑ − z|)
=⇒ E(dIoU3D) ≥ E(rIoU3D), (26)

assuming depth is the only source of error. Because AP3D is
an non-decreasing function of IoU3D, the inequality remains
preserved. Hence, we have dAP3D ≥ rAP3D.

Thus, the average precision from the dice model is better
than the regression model, which means a better detector.

A1.5. Properties of Dice Loss.

We next explore the properties of model in Lemma 3 trained
with dice loss. From Lemma 1, we write

E
(∥∥dw∞ −w∗

∥∥2
2

)
= c1Var(ϵ) + c2

Substituting the result of Lemma 2, we have

E
(∥∥dw∞ −w∗

∥∥2
2

)
=

c1
ℓ2

Erf
(

ℓ√
2σ

)
+ c2 (27)

Paper [3] says that for a normal random variable X with
mean 0 and variance 1 and for any x > 0, we have

√
4 + x2 − x

2

√
1

2π
e−

x2

2 ≤ P (X > x)

=⇒ 1

x+
√
4 + x2

√
2

π
e−

x2

2 ≤ P (X > x)

=⇒ 1

x+
√
4 + x2

√
2

π
e−

x2

2 ≤ 1− P (X ≤ x)

Table 8. Assumption comparison of Theorem 1 vs Mono3D
models.

Theorem 1 Mono3D Models
Regression Linear Non-linear
Noise η PDF Normal Arbitrary
Noise & Image Independent Dependent
Object Categories 1 Multiple
Object Size ℓ Ideal Non-ideal
Error Depth All 7 parameters
Loss L L1,L2, dice Smooth L1,L2, dice, CE
Optimizers SGD SGD, Adam, AdamW
Global Optima Unique Multiple

=⇒ 1

x+
√
4 + x2

√
2

π
e−

x2

2 ≤ 1− 1

2
−
∫ x

0

1√
2π

e−
X2

2 dX

=⇒ 1

x+
√
4 + x2

√
2

π
e−

x2

2 ≤ 1

2
−
∫ x

0

1√
2π

e−
X2

2 dX

=⇒ 1

x+
√
4 + x2

√
2

π
e−

x2

2 ≤ 1

2
−
∫ x√

2

0

1√
π
e−X2

dX

=⇒ 1

x+
√
4 + x2

√
2

π
e−

x2

2 ≤ 1

2
− 1

2
Erf
(

x√
2

)
=⇒ Erf

(
x√
2

)
≤ 1− 2

x+
√
4 + x2

√
2

π
e−

x2

2

Substituting x =
ℓ

σ
above, we have,

Erf
(

ℓ√
2σ

)
≤ 1− 2σ

ℓ+
√
4σ2 + ℓ2

√
2

π
e−

ℓ2

2σ2 (28)

Case 1: Upper bound. The RHS of Eq. (28) is clearly less
than 1 since the term in the RHS after subtraction is positive.
Hence,

Erf
(

ℓ√
2σ

)
≤ 1

Substituting above in Eq. (27), we have

E
(∥∥dw∞ −w∗

∥∥2
2

)
≤ c1

ℓ2
+ c2 (29)

Clearly, the deviation of the trained model with the dice loss
is inversely proportional to the object length ℓ. The devia-
tion from the optimal is less for large objects.
Case 2: Infinite Noise variance σ2 → ∞. Then, one of the

terms in the RHS of Eq. (28)
2σ

ℓ+
√
4σ2 + ℓ2

→ 1. More-

over,
ℓ

σ
→ 0 =⇒ e−

ℓ2

2σ2 ≈
(
1− ℓ2

2σ2

)
. So, RHS of

Eq. (28) becomes

Erf
(

ℓ√
2σ

)
≈ 1−

√
2

π

(
1− ℓ2

2σ2

)

Figure 6. Depth error histogram of released GUP Net and DE-
VIANT [43] on the KITTI Val cars. The histogram shows that
depth error is close to the Gaussian random variable.

=⇒ Erf
(

ℓ√
2σ

)
≈

(
1 +

√
2

π
+

√
2

π

ℓ2

2σ2

)
(30)

Substituting above in Eq. (27), we have

E
(∥∥dw∞ −w∗

∥∥2
2

)
≈ c1

ℓ2

(
1 +

√
2

π
+

√
2

π

ℓ2

2σ2

)
+ c2 (31)

Thus, the deviation from the optimal weight is inversely
proportional to the noise deviation σ2. Hence, the devia-
tion from the optimal weight decreases as σ2 increases for
the dice loss. This property provides noise-robustness to the
model trained with the dice loss.

A1.6. Notes on Theoretical Result

Assumption Comparisons. The theoretical result of The-
orem 1 relies upon several assumptions. We present a com-
parison between the assumptions made by Theorem 1 and
those underlying Mono3D models, in Tab. 8. While our
analysis depends on these assumptions, it is noteworthy that
the results are apparent even in scenarios where the assump-
tions do not hold true. Another advantage of having a linear
regression setup is that this setup has a unique global min-
ima (because of its convexity).
Nature of Noise η. Theorem 1 assumes that the noise η
is a normal random variable N (0, σ2). To verify this as-
sumption, we take the two SoTA released models GUP Net
[63] and DEVIANT [43] on the KITTI [25] Val cars. We
next plot the depth error histogram of both these models in
Fig. 6. This figure confirms that the depth error is close
to the Gaussian random variable. Thus, this assumption is
quite realistic.
Theorem 1 Requires Assumptions? We agree that The-
orem 1 requires assumptions for the proof. However, our

theory does have empirical support; most Mono3D works
have no theory. So, our theoretical attempt for Mono3D is a
step forward! We leave the analysis after relaxing some or
all of these assumptions for future avenues.
Does Theorem 1 Hold in Inference? Yes, Theorem 1
holds even in inference. Theorem 1 relies on the converged
weight Lw∞, which in turn depends on the training data
distribution. Now, as long as the training and testing data
distribution remains the same (a fundamental assumption in
ML), Theorem 1 holds also during inference.

A1.7. More Discussions

SeaBird improves because it removes depth estimation
and integrates BEV segmentation. We clarify to remove
this confusion. First, SeaBird also estimates depth. SeaBird
depth estimates are better because of good segmentation, a
form of depth (thanks to dice loss). Second, predicted BEV
segmentation needs processing with the 3D head to output
depth; so it can not replace depth estimation. Third, inte-
grating segmentation over all categories degrades Mono3D
performance ([50] and our Tab. 5 Sem. Category).
Why evaluation on outdoor datasets? We experiment
with outdoor datasets in this paper because indoor datasets
rarely have large objects (mean length > 6m).

A2. Implementation Details

Datasets. Our experiments use the publicly avail-
able KITTI-360, KITTI-360 PanopticBEV and nuScenes
datasets. KITTI-360 is available at https://www.
cvlibs.net/datasets/kitti-360/download.
php under CCA-NonCommercial-ShareAlike (CC BY-
NC-SA) 3.0 License. KITTI-360 PanopticBEV is available
at http://panoptic-bev.cs.uni-freiburg.
de/ under Robot Learning License Agreement. nuScenes
is available at https://www.nuscenes.org/
nuscenes under CC BY-NC-SA 4.0 International Public
License.
Data Splits. We detail out the detection data split construc-
tion of the KITTI-360 dataset.

• KITTI-360 Test split: This detection benchmark [52] con-
tains 300 training and 42 testing windows. These win-
dows contain 61,056 training and 9,935 testing images.
The calibration exists for each frame in training, while it
exists for every 10th frame in testing. Therefore, our split
consists of 61,056 training images, while we run monoc-
ular detectors on 910 test images (ignoring uncalibrated
images).

• KITTI-360 Val split: The KITTI-360 detection Val split
partitions the official train into 239 train and 61 valida-
tion windows [52]. The original Val split [52] contains
49,003 training and 14,600 validation images. However,
this original Val split has the following three issues:

Figure 7. Skewness in datasets. The ratio of large objects to
other objects is approximately 1 : 2 in KITTI-360 [52], while the
skewness is about 1:21 in nuScenes [7].

– Data leakage (common images) exists in the training
and validation windows.

– Every KITTI-360 image does not have the correspond-
ing BEV semantic segmentation GT in the KITTI-360
PanopticBEV [27] dataset, making it harder to compare
Mono3D and BEV segmentation performance.

– The KITTI-360 validation set has higher sampling rate
compared to the testing set.

To fix the data leakage issue, we remove the common
images from training set and keep them only in the vali-
dation set. Then, we take the intersection of KITTI-360
and KITTI-360 PanopticBEV datasets to ensure that ev-
ery image has corresponding BEV segmentation segmen-
tation GT. After these two steps, the training and valida-
tion set contain 48,648 and 12,408 images with calibra-
tion and semantic maps. Next, we subsample the valida-
tion images by a factor of 10 as in the testing set. Hence,
our KITTI-360 Val split contains 48,648 training images
and 1,294 validation images.

Augmentation. We keep the same augmentation strategy
as our baselines for the respective models.
Pre-processing. We resize images to preserve their aspect
ratio.

• KITTI-360. We resize the [376, 1408] sized KITTI-360
images, and bring them to the [384, 1438] resolution.

• nuScenes. We resize the [900, 1600] sized nuScenes im-
ages, and bring them to the [256, 704], [512, 1408] and
[640, 1600] resolutions as our baselines [116, 121].

Libraries. I2M and PBEV experiments use PyTorch [77],
while BEVerse and HoP use MMDetection3D [18].
Architecture.
• I2M+SeaBird.I2M [83] uses ResNet-18 as the backbone

with the standard Feature Pyramid Network (FPN) [53]
and a transformer to predict depth distribution. FPN is a
bottom-up feed-forward CNN that computes feature maps
with a downscaling factor of 2, and a top-down network
that brings them back to the high-resolution ones. There
are total four feature maps levels in this FPN. We use the

Box Net with ResNet-18 [29] as the detection head.

• PBEV+SeaBird.PBEV [27] uses EfficientDet [91] as the
backbone. We use Box Net with ResNet-18 [29] as the
detection head.

• BEVerse+SeaBird. BEVerse [116] uses Swin transform-
ers [59] as the backbones. We use the original heads with-
out any configuration change.

• HoP+SeaBird. HoP [121] uses ResNet-50, ResNet-101
[29] and V2-99 [74] as the backbones. Since HoP does
not have the segmentation head, we use the one in BEV-
erse as the segmentation head.

We initialize the CNNs and transformers from ImageNet
weights except for V2-99, which is pre-trained on 15 mil-
lion LiDAR data.. We output two and ten foreground cate-
gories for KITTI-360 and nuScenes datasets respectively.
Training. We use the training protocol as our baselines for
all our experiments. We choose the model saved in the last
epoch as our final model for all our experiments.

• I2M+SeaBird. Training uses the Adam optimizer [38], a
batch size of 30, an exponential decay of 0.98 [83] and
gradient clipping of 10 on single Nvidia A100 (80GB)
GPU. We train the BEV Net in the first stage with a learn-
ing rate 1.0× 10−4 for 50 epochs [83] . We then add
the detector in the second stage and finetune with the first
stage weight with a learning rate 0.5×10−4 for 40 epochs.
Training on KITTI-360 Val takes a total of 100 hours.
For Test models, we finetune I2M Val stage 1 model with
train+val data for 40 epochs.

• PBEV+SeaBird. Training uses the Adam optimizer [38]
with Nesterov, a batch size of 2 per GPU on eight Nvidia
RTX A6000 (48GB) GPU. We train the PBEV with the
dice loss in the first stage with a learning rate 2.5×10−3

for 20 epochs. We then add the Box Net in the second
stage and finetune with the first stage weight with a learn-
ing rate 2.5×10−3 for 20 epochs. PBEV decays the learn-
ing rate by 0.5 and 0.2 at 10 and 15 epoch respectively.
Training on KITTI-360 Val takes a total of 80 hours. For
Test models, we finetune PBEV Val stage 1 model with
train+val data for 10 epochs on four GPUs.

• BEVerse+SeaBird. Training uses the AdamW optimizer
[62], a sample size of 4 per GPU, the one-cycle policy
[116] and gradient clipping of 35 on eight Nvidia RTX
A6000 (48GB) GPU [116]. We train the segmentation
head in the first stage with a learning rate 2.0×10−3 for 4
epochs. We then add the detector in the second stage and
finetune with the first stage weight with a learning rate
2.0×10−3 for 20 epochs [116]. Training on nuScenes
takes a total of 400 hours.

• HoP+SeaBird. Training uses the AdamW optimizer [62],
a sample size of 2 per GPU, and gradient clipping of 35
on eight Nvidia A100 (80GB) GPUs [121]. We train the
segmentation head in the first stage with a learning rate
1.0×10−4 for 4 epochs. We then add the detector in the

Table 9. Error analysis on KITTI-360 Val.

Oracle AP3D 50 [%](−�) AP3D 25 [%](−�)
x y z l w h θ APLrg APCar mAP APLrg APCar mAP

8.71 43.19 25.95 35.76 52.22 43.99
✓ 9.78 41.63 25.70 36.07 50.63 43.35

✓ 9.57 46.08 27.82 34.65 53.03 43.84
✓ 9.90 42.32 27.11 39.66 53.08 46.37

✓ ✓ ✓ 19.90 47.37 33.63 41.84 52.53 47.19
✓ ✓ ✓ 9.49 45.67 27.58 33.43 51.53 42.48

✓ ✓ ✓ ✓ ✓ ✓ 37.09 46.27 41.68 44.58 51.15 47.87
✓ ✓ ✓ ✓ ✓ ✓ ✓ 37.02 47.03 42.02 44.46 51.50 47.98

second stage and finetune with the first stage weight with
a learning rate 1.0×10−4 for 24 epochs [116]. nuScenes
training takes a total of 180 hours. For Test models, we
finetune val model with train+val data for 4 more epochs.

Losses. We train the BEV Net of SeaBird in Stage 1 with
the dice loss. We train the final SeaBird pipeline in Stage 2
with the following loss:

L = Ldet + λsegLseg, (32)

with Lseg being the dice loss and λseg being the weight of
the dice loss in the baseline. We keep the λseg = 5. If
the segmentation loss is itself scaled such as PBEV uses the
Lseg as 7, we use λseg = 35 with detection.
Inference. We report the performance of all KITTI-360 and
nuScenes models by inferring on single GPU card. Our test-
ing resolution is same as the training resolution. We do not
use any augmentation for test/validation.

We keep the maximum number of objects is 50 per im-
age for KITTI-360 models. We use score threshold of 0.1
for KITTI-360 models and class dependent threshold for
nuScenes models as in [116]. KITTI-360 evaluates on win-
dows and not on images. So, we use a 3D center-based
NMS [42] to convert image-based predictions to window-
based predictions for SeaBird and all our KITTI-360 base-
lines. This NMS uses a threshold of 4m for all categories,
and keeps the highest score 3D box if multiple 3D boxes
exist inside a window.

A3. Additional Experiments and Results
We now provide additional details and results of the exper-
iments evaluating SeaBird ’s performance.

A3.1. KITTI-360 Val Results

Error Analysis. We next report the error analysis of the
SeaBird in Tab. 9 by replacing the predicted box data with
the oracle box data as in [66]. We consider the GT box
to be an oracle box for predicted box if the euclidean dis-
tance is less than 4m. In case of multiple GT being matched
to one box, we consider the oracle with the minimum dis-
tance. Tab. 9 shows that depth is the biggest source of error

Table 10. Complexity analysis on KITTI-360 Val.

Method Mono3D Inf. Time (s) Param (M) Flops (G)
GUP Net [63] ✓ 0.02 16 30

DEVIANT [43] ✓ 0.04 16 235
I2M [83] ✕ 0.01 40 80

I2M+SeaBird ✓ 0.02 53 130
PBEV [27] ✕ 0.14 24 229

PBEV+SeaBird ✓ 0.15 37 279

for Mono3D task as also observed in [66]. Moreover, the
oracle does not lead to perfect results since the KITTI-360
PanopticBEV GT BEV semantic is only upto 50m, while
the KITTI-360 evaluates all objects (including objects be-
yond 50m).
Computational Complexity Analysis. We next compare
the complexity analysis of SeaBird pipeline in Tab. 10. For
the flops analysis, we use the fvcore library as in [43].
Naive baseline for Large Objects. We next compare
SeaBird against a naive baseline for large objects detec-
tion, such as by fine-tuning GUP Net only on larger objects.
Tab. 11 shows that SeaBird pipelines comfortably outper-
form this baseline as well.
Does denoising BEV images help? Another potential ad-
dition to the SeaBird framework is using a denoiser between
segmentation and detection heads. We use the MIRNet-
v2 [111] as our denoiser and train the BEV segmentation
head, denoiser and detection head in an end-to-end manner.
Tab. 12 shows that denoising does not increase performance
but the inference time. Hence, we do not use any denoiser
for SeaBird.
Sensitivity to Segmentation Weight. We next study the
impact of segmentation weight on I2M+SeaBird in Tab. 13
as in Sec. 4.2. Tab. 13 shows that λseg = 5 works the best
for the Mono3D of large objects.
Reproducibility. We ensure reproducibility of our results
by repeating our experiments for 3 random seeds. We
choose the final epoch as our checkpoint in all our exper-
iments as [43]. Tab. 14 shows the results with these seeds.
SeaBird outperforms SeaBird without dice loss in the me-
dian and average cases. The biggest improvement shows up
on larger objects.

A3.2. nuScenes Results

Extended Val Results. Besides showing improvements
upon existing detectors in Tab. 7 on the nuScenes Val split,
we compare with more recent SoTA detectors with large
backbones in Tab. 16.
Dice vs regression on depth estimation methods. We re-
port HoP +R50 config, which uses depth estimation and
compare losses in Tab. 15. Tab. 15 shows that Dice model
again outperforms regression loss models.
SeaBird Compatible Approaches. SeaBird conditions the

detection outputs on segmented BEV features and so, re-
quires foreground BEV segmentation. So, all approaches
which produce latent BEV map in Tabs. 6 and 7 are com-
patible with SeaBird. However, approaches which do not
produce BEV features such as SparseBEV [55] are incom-
patible with SeaBird.

A3.3. Qualitative Results

KITTI-360. We now show some qualitative results of
models trained on KITTI-360 Val split in Fig. 8. We de-
pict the predictions of PBEV+SeaBird in image view on
the left, the predictions of PBEV+SeaBird, the baseline
MonoDETR [114], predicted and GT boxes in BEV in the
middle and BEV semantic segmentation predictions from
PBEV+SeaBird on the right. In general, PBEV+SeaBird
detects more larger objects (buildings) than GUP Net [63].
nuScenes. We now show some qualitative results of models
trained on nuScenes Val split in Fig. 9. As before, we de-
pict the predictions of BEVerse-S+SeaBird in image view
from six cameras on the left and BEV semantic segmenta-
tion predictions from SeaBird on the right.
KITTI-360 Demo Video. We next put a short demo video
of SeaBird model trained on KITTI-360 Val split compared
with MonoDETR at https://www.youtube.com/
watch?v=SmuRbMbsnZA. We run our trained model
independently on each frame of KITTI-360. None of the
frames from the raw video appear in the training set of
KITTI-360 Val split. We use the camera matrices avail-
able with the video but do not use any temporal information.
Overlaid on each frame of the raw input videos, we plot the
projected 3D boxes of the predictions, predicted and GT
boxes in BEV in the middle and BEV semantic segmen-
tation predictions from PBEV+SeaBird. We set the frame
rate of this demo at 5 fps similar to [43]. The attached demo
video demonstrates impressive results on larger objects.

A4. Acknowledgements
This research was partially sponsored by the Bosch Re-
search North America, Bosch Center for AI and the Army
Research Office (ARO) grant W911NF-18-1-0330. This
document’s views and conclusions are those of the authors
and do not represent the official policies, either expressed
or implied, of the ARO or the U.S. government.

We thank several members of the Computer Vision com-
munity for making this project possible. We deeply appre-
ciate Rakesh Menon, Vidit, Abhishek Sinha, Avrajit Ghosh,
Andrew Hou, Shengjie Zhu, Rahul Dey, Saurabh Kumar
and Ayushi Raj for several invaluable discussions during
this project. Rakesh suggested the MonoDLE [66] base-
line for KITTI-360 models because MonoDLE normalizes
loss with GT box dimensions. Shengjie, Avrajit, Rakesh,
Vidit, and Andrew proofread our manuscript and suggested
several changes. Shengjie helped us parse the KITTI-360

Table 11. KITTI-360 Val results with naive baseline finetuned for large objects. SeaBird pipelines comfortably outperform this naive
baseline on large objects. [Key: Best, Second Best,†= Retrained]

Method Venue AP3D 50 [%](−�) AP3D 25 [%](−�) BEV Seg IoU [%](−�)
APLrg APCar mAP APLrg APCar mAP Large Car MFor

GUP Net†[63] ICCV21 0.54 45.11 22.83 0.98 50.52 25.75 − − −
GUP Net (Large FT)†[63] ICCV21 0.56 − 0.28 2.56 − 1.28 − − −
I2M+SeaBird CVPR24 8.71 43.19 25.95 35.76 52.22 43.99 23.23 39.61 31.42
PBEV+SeaBird CVPR24 13.22 42.46 27.84 37.15 52.53 44.84 24.30 48.04 36.17

Table 12. Impact of denoising BEV segmentation maps with MIRNet-v2 [111] on KITTI-360 Val with I2M+SeaBird. Denoising does not
help. [Key: Best]

Denoiser AP3D 50 [%](−�) AP3D 25 [%](−�) BEV Seg IoU [%](−�)
APLrg APCar mAP APLrg APCar mAP Large Car MFor

✓ 2.73 43.77 23.25 14.34 51.23 32.79 21.42 39.72 30.57
✕ 8.71 43.19 25.95 35.76 52.22 43.99 23.23 39.61 31.42

Table 13. Segmentation loss weight λseg sensitivity on KITTI-360 Val with I2M+SeaBird. λseg = 5 works the best. [Key: Best]

λseg
AP3D 50 [%](−�) AP3D 25 [%](−�) BEV Seg IoU [%](−�)

APLrg APCar mAP APLrg APCar mAP Large Car MFor

0 4.86 45.09 24.98 26.33 52.31 39.32 0 7.07 3.54
1 7.07 41.71 24.39 32.92 52.9 42.91 23.78 40.58 32.18
3 7.26 43.45 25.36 34.47 52.54 43.51 23.40 40.15 31.78
5 8.71 43.19 25.95 35.76 52.22 43.99 23.23 39.61 31.42
10 7.69 43.41 25.55 34.22 50.97 42.60 22.15 39.83 30.99

Table 14. Reproducibility results on KITTI-360 Val with I2M+SeaBird. SeaBird outperforms SeaBird without dice loss in the median
and average cases. [Key: Best, Second Best]

Dice Seed AP3D 50 [%](−�) AP3D 25 [%](−�) BEV Seg IoU [%](−�)
APLrg APCar mAP APLrg APCar mAP Large Car MFor

✕

111 3.81 44.63 24.22 24.96 53.15 39.06 0 5.99 3.00
444 4.86 45.09 24.98 26.33 52.31 39.32 0 7.07 3.54
222 5.79 46.71 26.25 24.32 54.06 39.19 0 5.32 2.66
Avg 4.82 45.58 25.15 25.20 53.17 39.19 0 6.13 3.06

✓

111 7.87 44.03 25.95 33.55 53.93 43.74 22.64 40.64 31.64
444 8.71 43.19 25.95 35.76 52.22 43.99 23.23 39.61 31.42
222 8.71 42.87 25.79 34.71 51.72 43.22 22.74 40.01 31.38
Avg 8.43 43.36 25.90 34.67 52.62 43.65 22.87 40.09 31.48

Table 15. Dice vs regression on methods with depth estimation. Dice model again outperforms regression loss models, particularly for
large objects. [Key: Best, Second Best]

Resolution Method BBone Venue Loss APLrg (−�) APCar (−�) APSml (−�) mAP (−�) NDS (−�)

256×704 HoP+SeaBird R50

ICCV23 − 27.4 57.2 46.4 39.9 50.9
− L1 27.0 57.1 46.5 39.7 50.7
− L2 Did Not Converge

CVPR24 Dice 28.2 58.6 47.8 41.1 51.5

dataset, while Andrew helped in the KITTI-360 leader-
board evaluation. We also thank Prof. Yiyi Liao from Zhe-
jiang University for discussions on the KITTI-360 conven-
tions and evaluation protocol. We finally thank anony-
mous NeurIPS and CVPR reviewers for their exceptional
feedback and constructive criticism that shaped this final

manuscript.

Table 16. nuScenes Val Detection results. SeaBird pipelines outperform the baselines, particularly for large objects. [Key: Best, Second
Best, B= Base, S= Small, T= Tiny, = Released,∗= Reimplementation,§= CBGS]

Resolution Method BBone Venue APLrg (−�) APCar (−�) APSml (−�) mAP (−�) NDS (−�)

256×704

CAPE [104] R50 CVPR23 18.5 53.2 38.1 31.8 44.2
PETRv2 [58] R50 ICCV23 − − − 34.9 45.6
SOLOFusion §[75] R50 ICLR23 26.5 57.3 48.5 40.6 49.7
BEVerse-T [116] Swin-T ArXiv 18.5 53.4 38.8 32.1 46.6
BEVerse-T+SeaBird Swin-T CVPR24 19.5 54.2 41.1 33.8 48.1
HoP [121] R50 ICCV23 27.4 57.2 46.4 39.9 50.9
HoP+SeaBird R50 CVPR24 28.2 58.6 47.8 41.1 51.5

512×1408

3DPPE [89] R101 ICCV23 − − − 39.1 45.8
STS [101] R101 AAAI23 − − − 43.1 52.5
P2D [37] R101 ICCV23 − − − 43.3 52.8
BEVDepth [48] R101 AAAI23 − − − 41.8 53.8
BEVDet4D [31] R101 ArXiv − − − 42.1 54.5
BEVerse-S [116] Swin-S ArXiv 20.9 56.2 42.2 35.2 49.5
BEVerse-S+SeaBird Swin-S CVPR24 24.6 58.7 45.0 38.2 51.3
HoP∗[121] R101 ICCV23 31.4 63.7 52.5 45.2 55.0
HoP+SeaBird R101 CVPR24 32.9 65.0 53.1 46.2 54.7

640×1600

BEVDet [32] V2-99 ArXiv 29.6 61.7 48.2 42.1 48.2
PETRv2 [58] R101 ICCV23 − − − 42.1 52.4
CAPE [104] V2-99 CVPR23 31.2 63.2 51.9 44.7 54.4
BEVDet4D§[31] Swin-B ArXiv − − − 42.6 55.2
HoP∗[121] V2-99 ICCV23 36.5 69.1 56.1 49.6 58.3
HoP+SeaBird V2-99 CVPR24 40.3 71.7 58.8 52.7 60.2

900×1600

FCOS3D[93] R101 ICCVW21 − − − 34.4 41.5
PGD [94] R101 CoRL21 − − − 36.9 42.8
DETR3D [97] R101 CoRL21 22.4 60.3 41.1 34.9 43.4
PETR [57] R101 ECCV22 − − − 37.0 44.2
BEVFormer [50] R101 ECCV22 27.7 48.5 34.5 41.5 51.7
PolarFormer [36] V2-99 AAAI23 − − − 50.0 56.2

Figure 8. KITTI-360 Qualitative Results. PBEV+SeaBird detects more large objects (buildings) than MonoDETR [114]. We depict the
predictions of PBEV+SeaBird in the image view on the left, the predictions of PBEV+SeaBird, the baseline MonoDETR [114], and ground
truth in BEV in the middle, and BEV semantic segmentation predictions from PBEV+SeaBird on the right. [Key: Buildings and Cars of
PBEV+SeaBird; all classes of MonoDETR [114], and Ground Truth in BEV].

Figure 9. nuScenes Qualitative Results. The first row shows the front left, front, and front right cameras, while the second row shows
the back left, back, and back right cameras. [Key: Cars, Vehicles, Pedestrian, Cones and Barrier of BEVerse-S+SeaBird at 200×200
resolution in BEV].

