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1. Introduction

We provide all the supplementary information related
to WildlifeMapper (WM) and the Mara-Wildlife (MW)
dataset here. We also provide qualitative examples.

2. Method

High Frequency Feature Generator (HFG): This sec-
tion covers the detailed derivation and implementation in-
formation of our HFG module. The input image is pro-
cessed in parallel by the HFG module to generate fea-
tures with information about the location of the animal or
cluster. The HFG module is inspired from the limitation
of ViT models [6]. ViT models face challenges in effi-
ciently utilizing local structures. They segment an image
into patches and apply self-attention to model relationships,
but this approach often falls short in capturing detailed local
features [4, 7].

Research indicates that local features in images are
closely linked to high-frequency components [1,5]. We hy-
pothesize that suppressing low-frequency components can
mitigate the influence of a dominant homogeneous back-
ground. To test this, we performed a discrete Fourier Trans-
form (DFT) on the images, filtering out the low-frequency
components before reconstructing the images..

For a given input image I ∈ RH×W×C , where C is
channel dimension, we compute Discrete Fourier Trans-
form (DFT ) of I . In next step we suppress the low fre-
quency components with a controlling parameter and con-
struct the image I with inverse (IDFT ) to get back image

I ′. The DFT is computed as:

F (u, v) =

H−1∑
x=0

W−1∑
y=0

I(x, y) · e−j2π(ux/H+vy/W ) (1)

where F (u, v) is the magnitude spectrum, u and v are the
frequency coordinates, and j is the imaginary unit. Next, we
shift the lower frequency components to center of frequency
spectrum as:

F ′(u, v) = F

(
(u+

H

2
) mod H, (v +

W

2
) mod W

)
,

(2)
where mod is modulus operation. Next we mask the lower
frequencies with a controlling parameter r. The modified
Fourier transform G with mask M is defined as:

G(u, v) = M(u, v)⊙ F ′(u, v) (3)

where M =

{
1 if(u−H/2)2 + (v −W/2)2 ≤ r2

0 otherwise
(4)

Given the modified Fourier transform G, the reconstructed
image I ′ is given by:

I ′(x, y) =

H−1∑
u=0

W−1∑
v=0

G(u, v) · ej2π(ux/H+vy/W ) (5)

Next we reduce the dimension of the reconstructed im-
age I ′(x, y) via an embedding layer to generate embedding
hfcemb and pass them to the FR module
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2.1. Implementation Details

Each image taken from the drone is 8256 × 5506 × 3.
We create tiles for each image in the spatial domain, with
the size of 1024×1024×3 with 25% of overlap. The Patch
Embed layer uses a single CNN layer with a large kernel of
size 16×16 with stride 16. In the parallel branch, the High-
Frequency Feature Generator, we use DFT to compute the
Fourier transform, the mask is a binary disk with the radius
set to 128. The HFC Embed layer uses 3 CNN layers with
ReLU activation with a kernel of size 3 × 3 and a global
average pool at the end. The Feature Refiner (FR) mod-
ule consists of one cross attention layer with 1 linear layer.
The image encoder is a pre-trained ViT model [2] with 24
transformer layers and 16 heads. The Query Refiner (QR)
module takes in 100 queries each of channel dimension 256,
those are cross attended with hfcemb output. The box de-
coder contains 3 layers of two-way attention with 8 heads.
We train WM with AdamW optimizer [3] setting the learn-
ing rate to 10−4 for the FR, QR and box decoder with a
weight decay to 10−4. We set the learning rate for the Patch
Embed and HFC Embed layer to 10−5. We load the image
encoder with pre-trained weights from segment anything [2]
and keep it frozen.

3. Mara-Wildlife Dataset:
Flight path details The chosen flight path prioritized vast
open grasslands, as they frequently serve as habitats and
transit routes for larger fauna. The survey was conducted in
March. March is typically a rainy month when grasses are
green. The Serengeti migratory herd of wildebeest have al-
ready moved south from the region. Data collection was
typically scheduled during the early mornings or late af-
ternoons. These times are when animals are most active,
avoiding the midday sun. Although the evening presents
challenges due to diminished sunlight, the majority of the
data was acquired between 7AM and 10AM local time to
ensure optimal lighting conditions.

Camera Settings and Specifications: We mounted a
NIKON D850 camera to the bellyport of the airplane. The
camera was placed in a NADIR view and configured with an
intervalometer to collect an image every two seconds along
flight transects.

3.1. Rich Metadata for Computer Vision Bench-
marks:

Each raster included in the dataset is accompanied with
detailed metadata, the timestamp of the image capture, and
other camera EXIF (Exchangeable Image File Format) in-
formation such as focal length, FNumber, ISO, and Expo-
sureTime. We collected latitude and longitude and eleva-
tion information from the GPS log of the pilot and merged

this information using the camera data and time. If released
with the data, these metadata properties enrich the dataset’s
ecological value and unlock the potential for a myriad of
computational applications.

While the primary intent of our analysis was to provide
an estimate of the abundance of large mammals across the
Masai Mara ecosystem, the dataset’s comprehensive nature
presents opportunities that extend beyond wildlife studies.
These include: Sun Angle Prediction, Image Registration,
GPS Estimation, Elevation Prediction.

• Sun Angle Prediction: Given the timestamp and known
location of each image capture, the dataset could be
employed to develop models that predict the sun’s an-
gle based on the image content. Such applications can
benefit fields ranging from photovoltaic systems to ar-
chitectural planning.

• Image Registration: The dataset provides a platform
for researchers to work on algorithms that align or ’reg-
ister’ multiple images of the same region, even if taken
from varying angles or times. Such tasks find rele-
vance in areas like medical imaging and satellite image
analysis.

• GPS Estimation: The precise latitudinal and longitu-
dinal coordinates embedded in the metadata allow for
the creation of models that predict the GPS location
of specific objects or even individual pixels using only
the image content. This potential extends the bounds
of localization models in the realm of computer vision.

• Elevation Prediction: The dataset’s rich elevation data
provides an avenue to train models that can estimate
the altitude at which an image was taken, based purely
on visual cues. Such models can have vast applica-
tions, from aviation to drone technology.

These represent just a few of the many potential applica-
tions. We believe the Mara-Wildlife dataset has the poten-
tial to be a foundational resource for both ecological studies
and computer vision research, ushering in innovations and
novel solutions.

4. Results
In this section, we present more qualitative results of

detection of WildlifeMapper on the Mara-Wildlife dataset.
Good detection samples are shown in Fig. 1 and the failure
cases are shown in Fig.

Good cases: Each column in Fig. 1 shows detections
of different types of animals. Column-1 shows large ani-
mals: cattle, buffalo; Column-2 shows detection of small
animals: warthog, topi. Column-3 shows detection of an-
imals hidden or occluded in Row 1 & 2, Row 3 & 4 show
examples of other categories (i.e., lion).



Failure cases: Fig. 2 shows examples of where
WildlifeMapper struggled to make an accurate detection.
Each image shows a unique scenario where the detection
was either missed or misclassified or confused from the con-
textual information. For example in Column-1, Row-1, the
dry wooden log is detected as an object and misclassified
as shoat(sheep or goat) since shoats almost always oc-
cur in a group. Hence, the additional object identified was
mislabeled a shoat. Figures are on next page.



Figure 1. Good cases. Each column shows different category of detection. Column-1 shows large animals: cattle, buffalo; Column-2 shows
detection of small animals (warthog, topi), Column-3 shows detection of animals hidden or occluded.



Figure 2. Failure cases. The animals hiding in the shade are difficult to detect. Additional examples of misclassification also provided.
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