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Appendix
In this appendix, we cover,
A) Construction of the TACO dataset
B) nuScenes annotation
C) More ablation study of Action-slot
D) Analysis in challenging scenarios
E) Analysis of the TACO Dataset
F) Limitations
G) Implementation details

A. Construction of The TACO Dataset

We introduce the construction of the proposed Traffic
Activity Recognition (TACO) dataset. We leverage the
CARLA simulator [10] to collect arbitrary traffic scenarios
for achieving a balanced activity class distribution in a large
scale.

Scenario Collection. Certain atomic activities are rare
and difficult to collect in the real world, as shown in
the class distribution comparison of TACO and OATS in
Figure 2 of the main paper We propose to leverage the
CARLA simulator [11] to construct the synthetic dataset.
We choose CARLA simulator because it is widely accepted
and popular in the computer vision community, where
it provides various sensor suites and high-fidelity simu-
lations to facilitate autonomous driving development and
test [1, 6, 7, 23, 25, 26, 34, 35], safety-critical scenario gen-
eration [9, 16, 24], and domain adaption [28].

Scenarios are collected in the built-in maps (i.e.,
Town01, Town02, Town03, Town04, Town05, Town06,
Town07, and Town10HD) defined in CARLA 0.9.14. We
use Town10HD as the testing set. The rest are for the train-
ing set. We pinpoint all intersections on each map and sub-
sequently gather specific scenarios related to these intersec-
tions. Note that, we also collect T-intersections, following
the topology definition discussed in OATS [3], as shown in

Figure 1. Illustration of the topology in atomic activity for three
types of T-intersections.

Figure 2. Ego-vehicle’s action distribution in TACO and OATS.

Figure 1.
We collect scenarios with the following three ap-

proaches:
(a) Auto-pilot We use the built-in auto-pilot to control

ego-vehicle and road users, including vehicles and
pedestrians. We do not set destinations for all road
users. We program an automatic scenario collection
process when (1) ego-vehicle approaches an intersec-
tion and (2) ego-vehicle is surrounded by at least one
road user.
The length of the recordings varies from 51 to 242
frames. We set the duration for capturing various ego
motions. We randomly set the numbers of road users
and spawn them on a map. To collect diverse atomic
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Figure 3. The distribution of atomic activities in the nuScenes dataset [5]. Note that we neglect the notation of topology (i.e., roadway Z
and corner C) in the x-axis due to limited space.

activities, we set all road users (except for the ego-
vehicle) to ignore any traffic rules, including traffic
lights and stop signs.

(b) Automatic Scenario Generation [19]. We use exist-
ing pre-recorded basic scenarios in RiskBench [19]
and automatically generate diverse scenarios from a
basic scenario. Specifically, we select the pre-recorded
basic scenarios from interactive scenarios where ego-
vehicle interacts with other risky road users and non-
interactive scenarios where ego-vehicle does not inter-
act with any road user. Then we follow the augmen-
tation process proposed in RiskBench [19] to automat-
ically generate diverse scenarios via injecting random
road users and changing the weather. The scenarios
collected by RiskBench provide more human-like ma-
neuvers and more risky interactions compared to the
scenarios collected by auto-pilot.

(c) Scenario Runner [2]. Scenario runner, a scenario col-
lection tool developed by CARLA [10], can explicitly
generate a scripted scenario by defining a set of routes
for road users. Although auto-pilot and automatic sce-
nario generation can help collect diverse traffic activi-
ties, it is difficult to generate some specific classes of
atomic activity frequently. For example, Z3-Z2:K+, a
group of bicyclists turns left from the opposite road-
way of ego-vehicle. Therefore, we leverage scenario
runner to explicitly collect the scenarios that are diffi-
cult for the auto-pilot method. A scenario starts to col-
lect when ego vehicle reaches a trigger point (i.e., lo-
cation) predefined in the script. A scenario ends when
all scripted actions are accomplished. To further en-
hance the diversity of scenarios, we randomly spawn
road users surrounding the ego vehicle. Note that road
users are not guaranteed to be involved in an atomic
activity.

For all collection methods, we randomly set the weather and
light conditions. Note that we exclude night scenes because
of the poor visibility.

Sensor Suites. We deploy a wide field-of-view camera
(120 degrees) to record events taking place on the extreme

left and right sides of the ego-vehicle. For example, pedes-
trians crossing the street on the left (C3-C4:P and C4-
C3:P), and a vehicle turns right from the left roadway (Z4-
Z1:C). We collect the corresponding images and instance
segmentation. In addition, we collect instance segmentation
from Bird’s eye view.

Annotation Criterion. We follow the same annotation
criterion defined in OATS [3]. The annotation of atomic
activities can be subjective, e.g., whether a turning right
car that stops for a crossing pedestrian should be annotated.
Thus, the whole annotation work is done by one person to
ensure annotation consistency. In addition, we list a set of
annotation criteria to enhance the quality of data. If any
of the criteria is valid in a video, the annotator is asked to
discard the whole scenario.
1. Annotator cannot determine the starting roadway of a

road user.
2. Annotator cannot determine a road user’s destination.
3. Annotator cannot determine any road user’s action in a

video.
4. One of the road users has completed an atomic activity

at the beginning of the video, e.g., driving away from Z4
and almost arriving at Z1.

We additionally filter out scenarios with zero atomic activ-
ity, meaning there are no other road users engaged in any
actions. This helps address the positive-negative imbalance
issue in multi-label recognition [8, 27, 33]. We also ensure
that each atomic activity remains observable for a minimum
specified duration. This is due to the fact that the video will
be subsampled into a fixed-length K short clip before being
inputted into a model. We set K as 16 because the majority
of models we benchmarked utilize 16-frame clips. Conse-
quently, for an N-frame video, we ensure that each atomic
activity is present for a minimum of N/K frames. Other-
wise, annotators will discard the entire scenario.

Annotation for Ego-vehicle’s Action. We provide anno-
tations of the ego-vehicle’s actions for every scenario. We
annotate Z1-Z1:E if the annotator is unable to determine the
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Figure 4. Visualization of attention maps of Object-guided and Action-slot from slots that predict false positives on additional scenarios.
The scenario presents zero atomic activity but many static road users. False positive predicted by the object-guided model: C1-C4:P,
C4-C1:P (upper) and C1-C2:P, C2-C1:P, C1-C2:P+ (bottom). The attention scores within the Action-slot do not surpass the threshold in
any region.

ego vehicle’s action. For instance, when the ego-vehicle re-
mains stationary at a traffic light throughout the entire sce-
nario or moves slowly towards an intersection without ex-
hibiting a specific action. This approach differs from OATS
which excludes scenarios lacking a specific ego-vehicle ac-
tion.

Detailed Dataset Statistics. We have annotated a total of
16,521 instances of atomic activity. The maximum number
of road users observed in a single frame is 37. In a video,
it reaches up to 63. On average, each video encompasses
2.43 labeled traffic pattern descriptions. The duration of
the captured videos varies, ranging from 51 frames to 242
frames. The average length of the videos is 109.341 frames,
with a frame rate of 20Hz.

B. nuScenes Annotations

We annotate nuScenes [5], one of the most popular real-
world traffic scene datasets, for additional experiments. The
dataset was collected in Boston and Singapore. We fol-
low the same annotation criterion in TACO for nuScenes.
Specifically, we scan through the train val set of nuScenes
and annotate any scenarios in the 4-way and T-intersections.
However, the data in nuScenes is collected with a very
low frame per second (FPS), we thus select 16 consecu-
tive frames as a short clip. Note that we discard the night
scenes because of poor visibility. To this end, we obtain 426
clips and 933 atomic activity labels for the new nuScenes
dataset. The atomic activity class distribution is presented

in Figure 3. We randomly divide the set with 340 clips
for the training set and 86 clips for the testing set. We
downsample the image size to 256 × 768, which is the
same as TACO. For transfer learning, we downsample the
image size to the same size with pre-trained datasets, i.e.,
224 × 224 for OATS pre-trained and 256 × 768 for TACO
pre-trained. We neglect the atomic activities involved with
grouped two-wheelers (K+) when calculating mAP because
there are only 2 labels in the whole dataset.

C. More Ablation Study of Action-slot

Table 1. Comparison of using cross-attention and slot-attention in
Action-slot on OATS. S1, S2, and S3 denote the three test splits in
OATS.

S1 S2 S3 mAP

Cross attention 29.0 32.8 35.4 32.4
Slot attention 48.1 47.7 48.8 48.2

Object-guided vs. Action-slot. We further provide de-
tailed insights into the failure cases of object guidance. We
hypothesize that the object guidance may mislead the model
because not all objects are involved in an activity.

We create scenarios where many pedestrians are static
on sidewalks and not involved in any activities, as shown in
Figure 4, to better demonstrate the misleading signal caused
by the object guidance. We visualize the attention from any



Black vehicles stop at Z3 in this clip. Atomic activities: C2-C3:P+ and C3-C2:P+.

Many parked cars on both sides of the street. Atomic activities: Z3-Z1:C and C1-C2:P.

Parked car and pedestrians on the left and car stopping temperately at the Z3. Atomic activity: Z3-Z2:C.

Figure 5. Action-slot’s attention visualization in scenarios where atomic activities and static road users are present. We show scenarios
from the TACO, OATS [3], and nuScenes [5] datasets in the first, second, and third row, respectively.

Table 2. Results of Boston and Singapore splits in nuScenes.

nuScenes
Boston Singapore

X3D [14] 33.7 11.6
ARG [32] 17.2 6.6
Action-slot 34.7 18.3

slot that predicts false positive with red masks. The object-
guided method pays attention to the static road users and
produces false positive predictions. Moreover, the attention
to the false positives is accumulated temporally. We hypoth-
esize this is because the method is not robust to the spatial-
temporal features extracted from the backbone [14]. On the
other hand, our Action-slot demonstrates the robustness in
the scenarios with many static road users.

Cross-Attention vs. Slot Attention. We study the differ-
ence between cross-attention and slot-attention for multi-
label atomic activity recognition on OATS. Cross-attention
can be seen as a query-based method that recently has
achieved remarkable success in many tasks [15, 17, 37].
The key difference between cross-attention and slot atten-
tion is the dimension to which the softmax operation is

applied. The classic cross-attention [31] applies softmax
on the tokens, i.e., tokens compete over queries. On the
other hand, the softmax in slot attention is applied to the
slot dimension, which makes slots compete with each other
over the tokens. In Table 1, we conduct experiments by
replacing the slot attention in Action-slot with the classic
cross-attention. The results show inferior performance of
cross-attention compared to Action-slot using slot attention.
Moreover, we observe that the background guidance loss
Lbg in the query-based method can not converge well. The
results indicate that the cross-attention method may need a
stronger supervision signal.

D. Analysis in Challenging Scenarios
Atomic Activities and Static Road Users in Scenarios.
We show qualitative results in scenarios where both atomic
activities and multiple static road users are present. In Fig-
ure 5, the attention learned by Action-slot focuses on the
regions where activities occur instead of being distracted
by static road users, e.g., vehicles waiting at traffic lights
(first and third row), many parked cars (second row), and
pedestrians walking on the sidewalk (third row). The results
demonstrate the proposed action-centric representations are
robust in crowded traffic scenes and can decompose the
atomic activities and non-relevant regions from videos.



Scenario presenting traffic cones in the intersection. Atomic activities: Z4-Z3:C+ and Z1-Z3:K.

Scenario presenting the construction cover the entire corner C4. Atomic activities: C4-C1:P.

Figure 6. Action-slot’s attention visualization in nuScenes [5]. In the two scenarios, road structures are partially occluded by the traffic
cones and construction. Colored masks represented the action slots’ attention on distinct activities.

Boston v.s. Singapore. To verify the generalization of
Action-slot, we evaluate models on the Boston split and Sin-
gapore split in nuScenes [5] in Table 2. Note that the scenar-
ios collected in TACO and OATS [3] are right-hand-traffic.
The left-hand-traffic scenarios collected in Singapore thus
pose a challenging domain discrepancy for atomic activi-
ties. We use the model pretrained on TACO for better per-
formance. Experimental results show that the video-level
and object-aware representations both perform inferior in
the Singapore split. On the other hand, Action-slot shows
the generalization in the scenes with significant domain dis-
crepancy.

Table 3. Comparisons of pretrained representations from OATS
and TACO. We perform transfer learning on the nuScenes dataset.

nuScenes
Kinetics + OATS +TACO

X3D [14] 19.8 18.9 27.8
ARG [32] 12.2 12.7 17.0
Action-slot 23.6 23.6 32.3

Occluded Road Topology. We present the qualitative re-
sults to demonstrate that Action-slot can handle challenging
scenarios where the road topology is significantly occluded
in Figure. 6. We observe Action-slot can accurately predict
and localize the activities despite the intersection (upper)
and corner (lower) occupied by the traffic cones and con-
struction, respectively. This demonstrates the strong gener-
alization of Action-slot on recognizing road topology and
the reasoning ability of road topology.

Road User with Multiple Actions. We find that Action-
slot can handle the scenarios where a road user performs
multiple actions consecutively. In Figure 7, Action-slot

accurately predicts the two atomic activities involved with
the crossing pedestrian and spatial-temporally localizes the
transition of two actions. The result again demonstrates the
effectiveness of the proposed action-centric representations
for the action-aware task.

E. Analysis of The TACO Dataset
OATS Pretrain v.s. TACO Pretrain. We compare the
pertained representations learned from OATS and TACO by
fine-tuning them on nuScenes in Table 3. The results show
that models pretrained on TACO outperform the ones pre-
trained on OATS, verifying the real-world value and trans-
ferability of the proposed TACO dataset.

Activity Classes Analysis. We report the performance of
models for all 64 classes of atomic activities, which can not
be achieved in OATS [3] and nuScenes [5]. We find two
interesting observations. First, most results of activities in-
volved with grouped road users (e.g., C1-C2:C+) are better
than the ones involved with a single road user (e.g., C1-
C2:C), in which one possible reason is that the larger re-
gions of interest are easier to predict. Second, the smaller
or more distant activities are more challenging, which can
be attributed to the insufficient representations learned from
the backbone.

F. Limitation
Action-slot. We find Action-slot performs less effectively
in the occluded scenarios where the activities are visually
overlapped. In Figure 8, a bus with Z2-Z1 action occludes
a white car on the right side with action Z2-Z3. Action-
slot successfully predicts the bus’s action Z2-Z1 but fails
to predict Z2-Z3 and can not localize it via attention. We
hypothesize that this is because the occlusion may confuse
the competition mechanism in slot attention, i.e., two slots



Figure 7. Action-slot’s attention visualization in the TACO scenario where a crossing pedestrian first performs action C4-C3:P then returns
with C3-C4:P.

Figure 8. Action-slot’s attention visualization in the TACO scenario where an atomic activity is occluded. The yellow bus with red masks
partially occludes the white car on the right side (Z2). Action-slot successfully predicts Z3-Z1:C and Z2-Z1:C but misses the occluded
white car Z2-Z3:C (black arrow in illustration).

Table 4. Results of all 64 classes of atomic activity. Each grouped row is divided by the type of road users involved.

Z1-Z2:C Z1-Z3:C Z1-Z4:C Z2-Z1:C Z2-Z3:C Z2-Z4:C Z3-Z1:C Z3-Z2:C Z3-Z4:C Z4-Z1:C Z4-Z2:C Z4-Z3:C

X3D [14] 21.1 27.1 31.5 28.2 33.4 21.8 28.4 34.5 18.9 22.1 28.8 32.1
ARG [32] 36.2 17.9 23.6 25.9 26.8 14.5 15.3 15.7 16.2 41.4 30.0 19.1
Action-slot 48.5 47.9 53.1 57.7 54.1 45.9 41.5 43.5 47.0 48.1 44.8 44.7

Z1-Z2:C+ Z1-Z3:C+ Z1-Z4:C+ Z2-Z1:C+ Z2-Z3:C+ Z2-Z4:C+ Z3-Z1:C+ Z3-Z2:C+ Z3-Z4:C+ Z4-Z1:C+ Z4-Z2:C+ Z4-Z3:C+

X3D [14] 76.6 42.7 3.1 61.7 58.7 48.6 41.1 60.9 64.5 76.4 73.4 70.8
ARG [32] 32.8 11.0 0.1 38.3 3.8 17.8 9.8 13.2 9.4 4.1 15.6 1.2
Action-slot 86.9 63.7 28.7 74.9 59.5 75.2 64.6 79.0 79.1 82.1 78.0 69.7

Z1-Z2:K Z1-Z3:K Z1-Z4:K Z2-Z1:K Z2-Z3:K Z2-Z4:K Z3-Z1:K Z3-Z2:K Z3-Z4:K Z4-Z1:K Z4-Z2:K Z4-Z3:K

X3D [14] 17.3 27.9 24.9 36.0 10.6 14.2 30.5 21.5 9.1 13.7 21.7 13.0
ARG [32] 55.0 17.3 0.7 50.3 19.2 20.7 22.7 57.9 10.3 46.9 25.6 23.2
Action-slot 39.9 54.2 45.3 51.1 30.3 41.9 46.1 36.9 36.9 35.5 38.8 35.4

Z1-Z2:K+ Z1-Z3:K+ Z1-Z4:K+ Z2-Z1:K+ Z2-Z3:K+ Z2-Z4:K+ Z3-Z1:K+ Z3-Z2:K+ Z3-Z4:K+ Z4-Z1:K+ Z4-Z2:K+ Z4-Z3:K+

X3D [14] 76.7 31.0 1.0 83.5 26.3 53.2 54.1 75.0 36.6 40.4 79.8 55.2
ARG [32] 22.1 22.1 20.6 5.0 11.3 3.9 24.2 7.0 2.5 5.3 20.4 9.1
Action-slot 93.7 56.7 7.7 67.3 51.9 65.7 74.3 74.0 68.3 60.6 76.8 48.4

C1-C2:P C1-C4:P C2-C1:P C2-C3:P C3-C2:P C3-C4:P C4-C1:P C4-C3:P

X3D [14] 34.4 43.5 38.9 35.0 25.1 29.6 45.5 27.6
ARG [32] 31.1 38.7 23.7 12.8 10.6 22.5 39.3 15.3
Action-slot 52.4 60.6 55.9 42.5 44.3 38.2 65.2 34.2

C1-C2:P+ C1-C4:P+ C2-C1:P+ C2-C3:P+ C3-C2:P+ C3-C4:P+ C4-C1:P+ C4-C3:P+

X3D [14] 39.2 53.3 47.3 24.2 23.2 32.4 62.6 29.1
ARG [32] 19.6 24.8 18.0 6.1 5.7 9.4 24.6 8.4
Action-slot 61.0 74.5 65.0 34.8 33.0 37.4 80.8 35.3



compete over the overlapped regions. We hope our find-
ings can inspire the community to discover more advanced
action-centric representations that can handle occlusion is-
sues.

The TACO Dataset. We observe the 64 classes of atomic
activities in TACO can not fully cover the diverse events in
traffic scenes. For example, vehicles can only move be-
tween roadways and pedestrians can only move between
two near corners. However, two-wheelers can move be-
tween corners, e.g., C1-C2:K+, and pedestrians can also
move diagonally, e.g., C1-C3:P. These atomic activities are
important to many applications, such as safety-critical sce-
nario generation [16, 24, 34]. However, the existing auto-
pilot mechanism in the CARLA simulator does not support
the collection of such atomic activities. We aspire for our re-
search to inspire collaborative efforts within the community
to improve existing atomic activity datasets. This involves
gathering larger, more diverse datasets from real-world sce-
narios and advancing the sophistication of simulator-based
auto-pilots.

G. Implementation Details
Data Preprocessing. We downsample a video into a
fixed-length short clip as models’ input, which is common
practice in video recognition [3, 22, 27, 29]. Specifically,
we randomly sample subsequent with uniform intervals be-
tween frames for the training set and fix the subsequent
for the testing set. Note that we neglect this process for
nuScenes because we annotate each sample as a fixed 16-
frame clip.

Ego-vehicle’s action. To enhance the awareness of ego
motion, we include a module for all models to predict ego-
vehicle’s action via global features. The global features
Fego ∈ R256 are generated by applying a Conv3D with ker-
nel size 1. Since each video must have a label for the cor-
responding ego-vehicle’s action, the models output a multi-
class prediction with a fully connected layer and softmax
operation. Note that we neglect the ego vehicle’s action pre-
diction in OATS [3] since the absence of the annotation in
the released dataset. In this paper, we do not report the ac-
curacy of predicting ego-vehicle’s pattern because the per-
formance of all models saturates with nearly 100%.

Architecture of Action-slot. In this work, we eliminate
the GRU from the slot updating process [4, 12, 18, 20, 36]
for Action-Slot. This is because of its negligible impact on
enhancing performance in our experiments.

Training for transformer-based methods. We freeze the
pretrained transformer blocks except for the first three and

last three blocks during training. We downsample the input
image to 224×224 for both MViT [13] and VideoMAE [30]
on all datasets. We attempt to adapt the pre-trained posi-
tional embedding of MViT as suggested in ViT [11] by in-
terpolating spatial positional embedding. For example, we
adapt token numbers from 7 × 7 to 8 × 24 in our TACO
dataset. However, we find the performance degraded with
interpolation. We thus simply use image size 224 × 224 to
match the original positional embedding size.

Training for object-aware methods. We follow
OATS [3] to set the number of object proposals to 20.
Specifically, we select the 20 largest bounding boxes in
each frame. To match the ground-truth atomic activity
labels with the length of proposals, we pad the ground
truth with the negative class and use a Hungarian matcher
to associate them during training. It is worth noting that
because object-aware models output multi-class results
for each proposal, we rearrange the outputs to a set for
calculating the metrics.

Training for slot-based methods. In order to adapt slot-
based baselines to atomic activity recognition, we use the
last state of slots as the input to the classifier for the recur-
rent fashion, i.e., SAVi [12, 18] and MO [4]. As for Slot-
VPS [36], we sum up the slots across temporal dimensions.
For all slot-based baselines, including our Action-Slot, we
set both the dimensions of slots and image features to 256.

Backbone modification for Action-Slot. We use the fea-
tures of the last convolution block as the input to action slots
for all backbone encoders except for SlowFast. SlowFast
processes two paths: path Fast takes an original input se-
quence (16 frames) as input and the path Slow takes the sub-
sequence with 1/4 length (4 frames). We apply a pooling
operation to the output of path Fast for aligning the length
of path Slow and combine them with channel-wise concate-
nation. We freeze the entire backbone except for the last
ConvBlock.

Hyperparameters. All the models including our Action-
Slot are trained for 50, 100, and 100 epochs on OATS [3],
TACO, and nuscenes [5], respectively. We use AdamW
optimizer [21] with a batch size of 8. The learning rate
varies from 1e-4 to 5e-5 and weight decay varies from 0.1
to 0.0001. We apply a 50% dropout to all models’ last fea-
tures layer, e.g., X3D’s last ConvBlock. We conduct all
experiments with a single NVIDIA 3090 GPU with 24GB.
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