
In this document, we include supplementary materials for
“Improving Visual Recognition with Hyperbolical Visual
Hierarchy Mapping”. We first provide more concrete
implementation details (Sec. A), a theoretical baseline
(Sec. B), and additional experimental results (Sec. C).
Finally, we visualize more visual hierarchy trees from the
selected images to provide solid evidence of the proposed
method (Sec. D).

A. Network Architecture

A.1. Classification

To demonstrate the scalability of our proposed method,
we deploy our method on ResNet50 [1], EfficientNet [2],
DeiT [3], and Swin [4]. All encoders are pre-trained on
ImageNet-1K [5] dataset. Then, the hierarchy decomposition
module D is composed of two transformer layer, and then
the Hierarchy encoding module G is composed of four
transformer layers, in which each transformer layer has
four attention heads with 128 embedding dimensions. For
hyperbolic embedding, we initialize curvature parameter
c = 1. For dense prediction tasks, including semantic
segmentation and object detection, we feed vmap into the
hierarchy encoding stage instead of vcls. We obtain vcls by
applying global average pooling on vmap for ResNet [1] and
Swin [4], and utilize the [CLS] embedding for DeiT [3].

A.2. Dense prediction.

In the main paper, we report utilizing UperNet [6] and Mask-
RCNN [7] for semantic segmentation and object detection
& instance segmentation tasks. For each task’s decoder, we
incorporated the penultimate feature map v̂map, computed
by our Hi-Mapper, along with the vanilla output from the
intermediate layers of encoder F , as illustrated in Fig. 1.

B. Theoretical Baseline

B.1. Mixture of Gaussians

For hierarchy tree T, each node distribution at level l + 1
is represented as a Mixture of Gaussians (MoG) of its child
node distributions, which are independent. Hence, we can
derive the semantic seed distribution at level l + 1 through a
simple computation.

f l+1
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1

2
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where f l+1
k is the PDF for cl+1

k . Then, the mean of the MoG
is formulated follow as:

Table 1. Performance comparisons between full-trining and fine-
tuning across various DNNs on the ImageNet-1K dataset [5].

Backbone full-training fine-tuning ∆

DeiT-T [3] 74.5% 74.8% +0.3

DeiT-S [3] 82.8% 82.6% -0.2

DeiT-B [3] 83.3% 83.4% +0.1

Swin-T [4] 83.2% 83.5% +0.3

Swin-S [4] 83.6% 84.1% +0.5
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The standard deviation (σl+1
k )2 is derived as follow:
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C. Additional Results
C.1. Fine-tuning vs. full-training.

We also investigate the effectiveness of our proposed method
when it is applied to training the model from scratch. For
fair comparisons, we evaluate the classification performance
of Hi-Mapper trained with the full-training scheme (350
epochs) and fine-tuning scheme (baseline + 50 epochs) of
the same learning objectives on ImageNet-1K [5]. As shown
in Tab. 1, the experimental results demonstrate that the fine-
tuning scheme is better-suitable than full-training in terms
of understanding the structural organization of visual scenes.

D. Additional visualization
For a more comprehensive understanding, we will provide
additional visualization results that are included in the main
paper and also examine the visual hierarchy in CNNs [2], as
shown in Figure 2, 3. This will offer insights into the feature
representation aspects in transformer structures and CNNs,
as well as the benefits of applying our method.
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Figure 1. Illustration for overall procedure of Hi-Mapper for dense prediction tasks.
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Figure 2. Visualization of visual hierarchy trees decomposed by Hi-Mapper(DeiT-S) trained on ImageNet-1K with classification objective.
The same color family represents the same subtree.
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Figure 3. Visualization of visual hierarchy trees decomposed by Hi-Mapper(ENB4) trained on ImageNet-1K [5] with classification objective.
The same color family represents the same subtree.
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