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A. Details on hierarchy-adversarial learning

This section provides further details on our hierarchy-

adversarial learning approach introduced in section 3.3. We

are interested in learning an encoder fθ that yields a repre-

sentation that can be used to classify fine-grained categories

– but is agnostic to coarser hierarchical labels at level t > 0
in the hierarchy. For completeness, we repeat Eq. 5 from

the main paper and recall that pt(yti |xi) = p(yti |xi;θ,ω
t)

at the t-th hierarchy level:

LHA =

N∑

i=1

− log p0(y0i |xi)

︸ ︷︷ ︸

L0

−λ

T∑

t=1

N∑

i=1

− log pt(yti |xi)

︸ ︷︷ ︸

Lt

.

(5)

Directly minimizing Eq. 5 is problematic, as we allow

both adjustments of the encoder fθ and the linear decoding

functions hωt (with t > 0) to maximize the cross-entropy

of the coarse granularities Lt. First, the terms Lt can be

maximized mainly by hωt , leaving the encoder and the re-

sulting representations unaffected. Second, hωt can learn

trivial solutions, e.g., by recognizing one of the easy cate-

gories and always predicting zero probability for that cate-

gory if the input belongs to that category and a probability

of one otherwise.

To guarantee that the hierarchy-adversarial objective af-

fects the encoder, we formulate the optimization problem

as a min-max optimization problem where λ controls the

trade-off between the fine-grained classification and the reg-

ularization through hierarchy indifference. We denote the

parameters of the linear decoder hωt as ωt, which includes

the weights and bias. We can rewrite the objective as a

function of θ and ω
t where Lt corresponds to the cross-

entropy (negative log-likelihood) at level t and L0 to the

cross-entropy for the fine-grained labels:

LHA(θ,ω
0,ω1, . . . ,ωT ) = L0(θ,ω0)− λ

T∑

t=1

Lt(θ,ωt).

(1)

To ensure that Lt for t > 0 are not maximized by the decod-

ing functions, but by the representation, we solve a min-max

optimization problem:

min
θ,ω0

max
ω1,...,ωT

LHA(θ,ω
0,ω1, . . . ,ωT ). (2)

That is, we obtain the parameters θ of the encoder that

minimize L0 (i.e., the representation is discriminative for

fine-grained labels) and at the same time maximize Lt, with

t > 0, that is, the representation is pushed towards not cap-

turing coarser-grained hierarchical labels.

To train a deep neural network with this min-max ob-

jective using stochastic gradient descent (SGD), we adapt

a gradient reversal layer-based approach inspired by the

domain adaptation literature [2, 3]. By swapping the sign

of the gradient corresponding to the terms Lt before back-

propagating into the encoder (see illustration in Fig. 2c

in the main paper), this allows us to update the learn-

able parameters using standard SGD with one forward- and

backward-pass.

B. iNat2021-OSR dataset

B.1. Open­set splitting protocol

Here, we provide additional information about how we con-

structed the datasets used for evaluation in the main paper.

First, we select a subset of the iNat2021 dataset [5], based

on a super-category at a certain hierarchy level, as the train-

ing domain. Specifically, we use Aves (birds) and Insecta

(insects) at the “Class” level, as they are the dominant super-

categories in iNat2021 and provide the largest number of

images. We then select a subset of the fine-grained cate-

gories within these super-categories as the closed-set (fa-

miliar) categories used for training. We obtain seven dis-

tinct open-sets with semantic distances ranging from 1-hop

to 7-hop, the hop measuring the taxonomic distance be-

tween an open-set category and its nearest training category.

We achieve this in an iterative way, starting at the root

node T to select open-set candidates Ot that preserve a large

number of training categories and then guarantee that every

open-set category has the nearest training category at se-

mantic distance t-hop.

For every level t of the hierarchy:

1. We start by setting the open-set candidates Ot = Yt.

2. Exclude all open-set categories already selected at

coarser hierarchy levels from Ot.

3. Exclude 20% of categories with the highest number of

samples from Ot.

4. Exclude one “sibling” (category with same parent) of ev-

ery category yt in Ot to guarantee that every remaining

open-set candidate has the nearest training category at

semantic distance t-hop.

5. Select the final t-hop open-set by randomly selecting

0.2|Yt| categories of Ot and use their corresponding

fine-grained categories y0 as the final t-hop open-set. In

cases where |Ot| < 0.2|Yt| we select 0.5|Ot| categories.

Categories not assigned to any of the final t-hop open-sets

are used as the closed-set categories. Given this closed-



Train Test Open-set test

familiar familiar 1-hop 2-hop 3-hop 4-hop 5-hop 6-hop 7-hop

Kingdom 1 1 1 1 1 1 1 1 2

Phylum 1 1 1 1 1 1 1 5 7

Class 1 1 1 1 1 1 6 20 24

Order 26 26 13 15 10 6 48 72 121

Family 105 105 48 41 29 13 202 366 388

Genus 379 379 118 129 86 54 539 1,801 1,909

Species 745 745 297 180 170 94 930 2,972 4,607

Samples 210,323 7,450 2,970 1,800 1,700 940 9,300 29,720 46,070

Table A1. iNat2021-OSR-Aves data split statistics.

Train Test Open-set test

familiar familiar 1-hop 2-hop 3-hop 4-hop 5-hop 6-hop 7-hop

Kingdom 1 1 1 1 1 1 1 1 2

Phylum 1 1 1 1 1 1 1 5 7

Class 1 1 1 1 1 1 6 20 24

Order 14 14 8 8 9 3 16 119 120

Family 129 129 58 57 38 23 68 457 387

Genus 1,039 1,039 248 294 75 64 149 1,367 1,904

Species 1,501 1,501 505 333 99 88 226 2,636 4,587

Samples 398,952 15,010 5,050 3,330 990 880 2,260 26,360 45,870

Table A2. iNat2021-OSR-Insecta data split statistics.

set, we compute the semantic distance to categories out-

side the super-category (i.e., other animals, plants, fungi,

etc.) and group them by their hop distance. In both cases of

Aves and Insecta, hop distances 5–7 are outside the super-

category and thus outside the training domain. The final

data split statistics for iNat2021-OSR-Aves and iNat2021-

OSR-Insecta are given in Tables A1 and A2.

B.2. Qualitative examples

We show examples of open-set samples at different hop dis-

tances in Fig. A1 and A2.

C. Evaluation

Closed-set. We report overall accuracy as well as macro

accuracy by averaging category accuracies. The latter is

relevant for class-imbalanced datasets, which is the case for

coarser granularities in iNat2021.

Open-set. To evaluate the binary classification task famil-

iar vs. novel, we define the familiar as positive and novel

as negative categories. We use standard open-set evaluation

metrics to evaluate the ranking of open-set vs. closed-set.

These metrics are threshold-free, i.e., the decision thresh-

old is swept over the entire range of possible values of a

score to report the average performance over all possible

settings [1, 6] and include the AUROC: the area under the

Receiver-Operator Curve, which plots the true positive rate

(TPR) vs. the false positive rate (FPR), and the AUPR: area

under the Precision-Recall-Curve. Furthermore, we report

the TNR@TPR95: the true negative rate (true novelty rate)

at the true positive rate (true familiarity rate) of 95%. This

metric reflects a scenario, where we would calibrate a sys-

tem to have a high TPR (recall), but would like to optimize

the TNR (or false positive rate). Finally, the Top-5-acc mea-

sures the accuracy of correctly detected novelties in the top

5% retrieved novelties, i.e., the analog to top-k accuracy,

but with k set as a percentage of the number of test sam-

ples (top-p). This can be critical in discovery applications,

where a human expert checks the retrieved results.

D. Additional results

D.1. Closed­set accuracy for hierarchy­aware
strategies

Closed-set performance for hierarchy-aware training strate-

gies and the standard cross-entropy training on fine-grained

categories are presented in Table A3. The hierarchy-

supportive approach improves closed-set accuracy for

coarser granularities (genus, family, order), but not for fine-

grained categories (species). The hierarchy-adversarial ap-

proach has little impact on closed-set accuracy across all

granularities.

D.2. Qualitative error cases

We present qualitative error cases in Fig. A7. These false

familiarity mistakes from the 1-hop open-set in Aves are

the samples with the highest maximum logit score (indicat-

ing familiarity) when training with cross-entropy on fine-

grained categories. We report the confidence of the mod-

els trained with cross-entropy, hierarchy-supportive, and

hierarchy-adversarial strategies.

D.3. OSR results for hierarchy­aware strategies for
NN and KLD scores

For completeness, we include extended results of hierarchy-

aware learning strategies for the maximum logit score

(MLS) in Fig. A3 (analogous to Fig. 5 in the main paper).

Similarly, for the nearest neighbour (NN) score (Fig. A4)

and the KL-disagreement (KLD) score (Fig. A5). For In-

secta, we observe a clear pattern for the NN score whereby

hierarchy-adversarial can improve fine-grained OSR (1-

hop), while being harmful for coarse-grained OSR (7-

hop). In contrast, hierarchy-supportive training can improve

coarse-grained OSR but has little effect on fine-grained

OSR. The KL-disagreement score is not improved with

hierarchy-aware learning strategies.

D.4. Ablation study for the nearest neighbour (NN)
score

In Fig. A6, we present ablation studies for the nearest neigh-

bour (NN) score to analyze the effect of i) normalizing the

representations before computing the distance (Fig. A6a,d)

and ii) the number of nearest neighbours k used to com-

pute the score (Fig. A6b,c,e,f). First, we observe that in all

cases, normalizing the representations leads to a substan-

tial improvement in AUROC (as reported for OOD detec-

tion [4]), except for large hop distances (coarse OSR). We
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Figure A1. Examples of semantic distances for iNat2021-OSR-Aves. Given an image from a closed-set category (blue box), we visualize

a random sample from an open-set category with different semantic distance in every row. The taxonomic distance (a proxy for semantic

distance) is measured in number of hops, where 1-hop means that two categories share their parent, 2-hop share their grandparent etc.

Species

(fine)

Genus Family Order

(coarse)

Cross-entropy 67.4 (0.3) 74.9 (0.3) 81.7 (0.3) 89.8 (0.2)

Hierarchy-supportive 66.6 (0.4) 75.8 (0.4) 83.2 (0.4) 91.1 (0.2)

Hierarchy-adversarial (α=0.25) 67.6 (0.3) 75.2 (0.3) 82.2 (0.2) 90.6 (0.2)

(a) Accuracy

Species

(fine)

Genus Family Order

(coarse)

Cross-entropy 67.4 (0.3) 73.7 (0.3) 78.3 (0.4) 85.1 (0.4)

Hierarchy-supportive 66.6 (0.4) 74.6 (0.4) 79.3 (0.7) 86.2 (0.2)

Hierarchy-adversarial (α=0.25) 67.6 (0.3) 74.1 (0.3) 78.2 (0.7) 86.1 (0.4)

(b) Macro accuracy

Table A3. Closed-set performance of hierarchy-aware strategies. Results for single models averaged over 5 independent training runs

with standard deviation in parentheses. (a) Overall accuracy. (b) Macro accuracy by averaging the per-category accuracies. The accuracy

of coarser test granularities (columns) is evaluated using hard pooling based on the predicted label and the given hierarchy.

note that computing the L2-distance on L2-normalized rep-

resentations leads to the same ranking as using the cosine-

distance, a function of the angle between two feature vec-

tors. Second, increasing the number of nearest neighbours k

used to compute the score leads to worse OSR performance,

and setting k = 1 leads to the best results, except for the 7-

hop open-set. This behaviour holds for both using the mean

and the max (i.e., k-th) distance over k nearest neighbours.
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Figure A3. Hierarchy-aware training strategies for MLS. OSR results for Aves (top) and Insecta (bottom) using the maximum logit score

(MLS) of ensembles with 5 models. We compare the training strategies: Cross-entropy on the fine-grained labels, hierarchy-supportive

(Eq. 4, main paper) and hierarchy-adversarial (Eq. 5, main paper). Higher is better for all metrics. Additional evaluation metrics to extend

Fig. 5 in the main paper.
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Figure A4. Hierarchy-aware training strategies for nearest neighbour (NN) score. OSR results for Aves (top) and Insecta (bottom)

using the nearest neighbour (NN) score of ensembles with 5 models. We compare the training strategies: cross-entropy on the fine-grained

labels, hierarchy-supportive (Eq. 4, main paper), and hierarchy-adversarial (Eq. 5, main paper). Higher is better for all metrics.
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Figure A5. Hierarchy-aware training strategies for KL-disagreement (KLD) score. OSR results for Aves (top) and Insecta (bottom)

using the Kullback-Leibler disagreement (KLD) score of ensembles with 5 models. We compare the training strategies: cross-entropy on

the fine-grained labels, hierarchy-supportive (Eq. 4, main paper), and hierarchy-adversarial (Eq. 5, main paper). Higher is better for all

metrics.
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Figure A6. Ablation study for nearest neighbour (NN) score. OSR results (AUROC) for Aves (top) and Insecta (bottom). (a,d) The effect

of l2-normalizing the representations before computing the L2-distance. (b,e) Number of k nearest neighbours using the mean distance.

(c,f) Number of k nearest neighbours using the k-th distance, i.e., the max distance.
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Figure A7. Error cases. False familiarity mistakes (i.e., open-set samples confused with closed-set categories with high confidence) of the

classifier trained with cross-entropy on the fine-grained labels. The hierarchy-adversarial (H-adversarial) learning reduces the confidence

in most of these error cases. All examples are from the 1-hop open-set (red boxes) and are confused with a closed-set category with a 1-hop

semantic distance (samples on the right). For non-experts, the visual differences are hard to identify.


