
In this supplementary material, we first provide a brief
description of the datasets used in our experiment Section
(Section A). Next, the proof of Theorem 1 is provided in
Section B. In Section C, we will detail the implementation
and present ablation studies about the detectors’ robustness
towards unseen corruptions. Lastly, in Section D, we dis-
cuss the limitations of our proposed method and outline our
planned future work.

A. Datasets
We describe here four popular benchmark datasets used

to evaluate our proposed GAC-FAS:

• Idiap Replay Attack (denoted as I) [7]: This dataset
includes 1,300 videos captured from 50 clients under
two different lighting conditions. It features four types
of replayed faces and one type of printed face for spoof
attacks.

• OULU-NPU (denoted as O) [3]: Comprising high-
resolution videos, this dataset contains 3,960 spoof
face videos and 990 live face videos captured from
six different cameras. It includes two kinds of printed
faces and two kinds of replayed faces.

• CASIA-MFSD (denoted as C) [76]: Consisting of
50 subjects, each with 12 videos, this dataset features
three types of attacks: printed photo, cut photo, and
video attacks.

• MSU-MFSD (denoted as M) [67]: This dataset in-
cludes 280 videos for 35 subjects recorded with dif-
ferent cameras. It encompasses three spoof types: one
kind of printed face and two kinds of replayed faces.

Following the pre-processing steps outlined in [57], we
utilized MTCNN [73] to detect faces in each frame of the
videos.

B. Proof of Theorem 1
Theorem 1 (Restate): Suppose that the loss function

ℓ(θt) = ℓ(f(x; θt), y) satisfies the following assump-
tions. (i) its gradient g(θt) = ∇ℓ(θt) is bounded, i.e.,
∥g(θt)∥ ≤ G, ∀t. (ii) The stochastic gradient is L-Lipchitz,
i.e., ∥g(θt)−g(θ′t)∥ ≤ L∥θt− θ′t∥, ∀θt, θ′t. Let the learning
rate ηt be η0√
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where θadv
t = θt + ϵ̂t − γtδt, δt = Σk
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For simplicity, we denote the update at step t as:

dt = −ηtg(θt)− ηtg(θ
adv
t ). (11)

By L-smoothess of ℓ and the definition of dt = θt+1 − θt,
we have:
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Replace Equation 13 into Equation 12 we obtain:
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Perform telescope sum and taking expectation on each step
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where C0, C1, C2 are some constants.
For the second part of the Theorem, we have that :
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Sum over t and average, then we have:
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where C3, C4, C5 are some constants.

C. More Empirical Experiment
Details of our Implementation. We observe in Alg. 1

that random sampling in each iteration does not necessarily
include images from all source domains. Specifically, the
algorithm functions effectively even if, during certain itera-
tions, the images in a minibatch belong to only 2, or even a
single, domain. However, this issue can be mitigated by de-
signing a balanced sampler. Regarding the training process,
the hyperparameters are detailed precisely in Table 6.

lr. step FC lr. scale Logit scale Weight decay Epochs
ICM→ O 40 10 12 1× 10−4 150
OMI→ C 40 1 16 5× 10−4 80
OCM→ I 40 10 32 6× 10−4 50
OCI→M 5 10 12 6× 10−4 20

Table 6. Hyper-parameter settings in our experiment.

Robustness to Unseen Corruptions. In assessing the
generalization capabilities of a FAS detector, it is crucial to
evaluate its robustness against various types of input corrup-
tions, a topic extensively explored in prior works [24, 32].
Adopting the experimental settings from [24], we examine
the detector’s performance under six common image cor-
ruptions: saturation, contrast, block-wise distortion, white
Gaussian noise, blurring, and JPEG compression, each with
five levels of severity. In Figure 6, we showcase examples
of live and spoof faces affected by six types of image cor-
ruption techniques [24], each applied with a severity level
of 3. While these represent digital corruptions, they are still
pertinent for assessing the resilience of spoof face detectors.

We compare our method with 4 baselines: SSAN [66],
SSDG [44], SA-FAS [57], and IADG [77]. These compar-
isons are based on the available official models. The results
are demonstrated in Fig. 7. Our method consistently ex-
hibits robustness across varying severity levels, as indicated
by its lower HTER performance on average.



Figure 6. Illustration of six corruption types applied on live and spoof faces in OULU-NPU dataset.

Figure 7. HTER performance (%) of DG spoof detectors under various image corruptions with different severity levels [24]. The experi-
ment are conducted on ICM→O with the corruptions are applied on OULU-NPU dataset.

D. Limitations and Future Works

While our proposed method has achieved SoTA perfor-
mance across various experiments, we acknowledge two
limitations in our work. First, the training dataset requires
domain labels to derive ascending points, which may limit
its applicability in the in scenarios where training data
from multiple sources are combined. Second, although our
method maintains comparable computational demands to
other methods during the validation phase, GAC-FAS could
incur higher computational costs during training when han-
dling a large number of domains as the rising number of
ascending points.

In our forthcoming research, we aim to reduce the num-
ber of ascending points by exploring similarities across do-

mains. This endeavor includes developing a more effi-
cient regularization approach to gain deeper insights into
generalization updates. Notably, our proposed method,
which employs a SAM-based optimizer, demonstrates par-
allels in generating domain-specific gradients with meta-
learning techniques [5, 55, 63], albeit in a contrasting di-
rection. While meta-learning methods require additional
domain-specific gradient steps and may underperform com-
pared to our approach, the potential synergy of combining
ascending vectors from our GAC-FAS with descending vec-
tors from meta-learning promises further enhancements in
domain generalization. Our future research will concentrate
on investigating these synergistic possibilities.
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