
Integrating Efficient Optimal Transport and Functional Maps For Unsupervised
Shape Correspondence Learning

Supplementary Material

In this supplementary, we first define some notations that
are used in our main paper and supplementary in Sec. 8. We
then discuss some limitations of our work and potential fu-
ture directions to address them in Sec. 9. In Sec. 10, we
provide detailed computation and algorithm to compute the
proposed loss functions. Furthermore, we delineate the im-
plementation details and hyperparameters used in our train-
ing process in Sec. 11. Finally, we provide additional qual-
itative results of our proposed approach in Sec. 12.

8. Notations
For any d � 2, we denote Sd�1 := {✓ 2 Rd

| ||✓||
2
2 = 1}

and U(Sd�1) as the unit hyper-sphere and its corresponding
uniform distribution. We denote ✓]µ as the push-forward
measures of µ through the function f : Rd

! R that is
f(x) = ✓

>
x. Furthermore, we denote P(X) as the set of

all probability measures on the set X . For p � 1, Pp(X)
is the set of all probability measures on the set X that have
finite p-moments.

9. Limitations and discussion
Our work is the first to integrate an efficient optimal trans-
port to functional map framework for shape correspon-
dence, yet it is not without limitations, potentially opening
new research directions. First of all, our algorithm is de-
signed for use with clean and complete meshes. An intrigu-
ing avenue for future research would be to extend the ap-
plicability of our method to more diverse scenarios, such as
dealing with partial meshes, noisy point clouds, and other
forms of data representation. This expansion would en-
hance the versatility of our approach in handling a wider
range of practical applications. Secondly, our adaptive re-
finement module, which utilizes an entropic regularized op-
timal transport for estimating the soft-feature similarity ma-
trix, shows promise in achieving more precise refinement.
However, this method is not without its drawbacks, notably
a quadratic increase in memory complexity and computa-
tional demand. This presents a challenge that future re-
search could address by developing more computationally
efficient approximations, thereby making the process more
feasible for larger datasets or more resource-constrained
environments. Overall, these potential research directions
could significantly contribute to the evolution of shape cor-
respondence methodologies.

10. Detailed algorithms and discussion
Sliced Wasserstein distance. The unidirectional sliced
Wasserstein distance version of Eq. 10 is given by:

LuniSW = (E✓⇠U(Sd�1)Wp

p
(✓]Fx, ✓]F̂y))

1
p , (15)

where F̂y = ⇧̂xyFy . The unidirectional sliced Wasserstein
distance given in Eq. 15 is computed by using L Monte
Carlo samples ✓1, ..., ✓L from the unit sphere:

\LuniSW =

1

L

LX

l=1

Wp

p
(✓l]Fx, ✓l]F̂y)

! 1
p

, (16)

where Wp

p
(✓]Fx, ✓]F̂y) =

R 1
0 |F

�1
✓]Fx

(z) � F
�1
✓]F̂y

(z)|pdz

denotes the closed form solution one-dimensional Wasser-
stein distance of two probability measures Fx and F̂y .
Here, F✓]Fx and F

✓]F̂y
are the cumulative distribution func-

tion (CDF) of ✓]Fx and ✓]F̂y respectively.
Similarly, the bidirectional sliced Wasserstein distance

in Eq. 10 is also estimated by using L Monte Carlo samples
✓1, ..., ✓L from the unit sphere:

\LbiSW = (
1

L

LX

l=1

[Wp

p
(✓l]Fx, ✓l]F̂y)

+ Wp

p
(✓l]Fy, ✓l]F̂x)])

1
p ,

(17)

where F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy . We provide a
pseudo-code for computing the unidirectional and bidirec-
tional sliced Wasserstein distance in Algorithm 1 and Algo-
rithm 2, respectively.
Energy-based sliced Wasserstein distance. The unidirec-
tional sliced Wasserstein distance version of Eq. 11 is de-
fined as:

LuniEBSW =

✓E✓⇠�0(✓)[W✓,Xw(✓)]

E✓⇠�0(✓)[w(✓)]

◆ 1
p

, (18)

where we denote W✓,X := Wp

p
(✓]Fx, ✓]F̂y), w(✓) :=

exp(W✓,X)
�0(✓)

, and �0(✓) 2 P(Sd�1) denotes the proposed dis-
tribution. The unidirectional energy-based sliced Wasser-
stein distance given in Eq. 18 can be computed via impor-
tance sampling estimator L Monte Carlo ✓1, ..., ✓L sampled
from �0(✓):

\LuniEBSW =

1

L

LX

l=1

[W✓l,X w̃(✓l)]

! 1
p

, (19)

Algorithm 1 Computational algorithm of the unidirectional SW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y)

end for
Compute \LuniSW =

⇣
1
L

P
L

l=1 vl

⌘ 1
p

Return: \LuniSW

Algorithm 2 Computational algorithm of the bidirectional SW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y) + Wp

p
(✓l]Fy, ✓l]F̂x)

end for
Compute \LbiSW =

⇣
1
L

P
L

l=1 vl

⌘ 1
p

Return: \LbiSW

Algorithm 3 Computational algorithm of the unidirectional EBSW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y)

Compute wl = f(Wp

p
(✓l]Fx, ✓l]F̂y))

end for
Compute \LuniEBSW =

⇣
1
L

P
L

l=1 vl
wlPL
i=1 wi

⌘ 1
p

Return: \LuniEBSW

where w̃(✓l) := w(✓l)PL
l0=1

w(✓l0)
. When �0(✓) = U(Sd�1) =

�(d/2)
2⇡d/2 (a constant of ✓) [38], we substitute w(✓l) with
f(W✓l,X). We can choose the energy function f(x) = e

x,
then the normalized importance weights become the Soft-
max function of W✓,X as follows:

w̃(✓l) = Softmax(W✓l,X) =
exp(W✓l,X)

P
L

l0=1 exp(W✓l0 ,X)

Based on the computation of unidirectional energy-
based sliced Wasserstein distance, we can compute the

bidirectional energy-based sliced Wasserstein distance, i.e.
LbiEBSW , in Eq. 11 as follows:

\LbiEBSW =

1

L

LX

l=1

[(W✓l,X + W✓l,Y)ŵ(✓l)]

! 1
p

, (20)

where we denote W✓,Y := Wp

p
(✓]Fy, ✓]F̂x), and ŵ(✓l) :=

exp(W✓l,X+W✓l,Y)
PL

l0=1
exp(W✓l0 ,X

+W✓l0 ,Y
)
. It is worth noting that the impor-

tance weights of \LbiEBSW in Eq. 20 are different from that

Algorithm 4 Computational algorithm of the bidirectional EBSW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y) + Wp

p
(✓l]Fy, ✓l]F̂x)

Compute wl = f(Wp

p
(✓l]Fx, ✓l]F̂y) + Wp

p
(✓l]Fy, ✓l]F̂x))

end for
Compute \LbiEBSW =

⇣
1
L

P
L

l=1 vl
wlPL
i=1 wi

⌘ 1
p

Return: \LbiEBSW

Algorithm 5 Algorithm of the adaptive refinement
Input: Pair shapes X ,Y with their Laplace-Beltrami operators �x,�y . Trained model with parameter G⇥. Number of
refinement steps T .

while reach T do
Compute Fx = G⇥(X ,�x) and Fy = G⇥(Y,�y). . Extract features.
Compute Cxy, Cyx = FMSolver(Fx,Fy,�x,�y). . Find functional map via FM solver.
Compute ⇧̃xy, ⇧̃yx = Sinkhorn(Fx,Fy). . Estimate pseudo similarity matrix via Sinkhorn.
Compute unsupervised losses Ltotal(Fx,Fy, Cxy, Cyx, ⇧̃xy, ⇧̃yx).
Update features and soft similarity matrix by minimizing Ltotal.

end while
Compute P = NN(Fx,Fy) . Compute point-to-point correspondence via nearest neighbor search.
Return: P

of \LuniEBSW in Eq. 19, since the slicing distribution here
is shared and affected by both one-dimensional Wasserstein
distances, thus providing a more expressive projecting fea-
tures for computing sliced Wasserstein distance. We pro-
vide a pseudo-code for computing the unidirectional and
bidirectional energy-based sliced Wasserstein distance in
Algorithm 3 and Algorithm 4, respectively.
Adaptive refinement. As discussed in Sec. 4.5, we re-
fine our correspondence result by estimating the pseudo-
soft correspondence via entropic regularized optimal trans-
port. The pseudo-code for our adaptive refinement is given
in Algorithm 5.

11. Implementation details
All experiments are implemented using Pytorch 2.0, and
executed on a system equipped with an NVIDIA GeForce
RTX GPU 2080 Ti and an Intel Xeon(R) Gold 5218 CPU.
We employ DiffusionNet [50] as the feature extraction
mechanism, with wave kernel signatures (WKS) [6] serv-
ing as the input features. The dimension of the WKS is
set to 128 for all of our experiments. Regarding spectral
resolution, we opt for the first 200 eigenfunctions derived
from the Laplacian matrices to form the spectral embed-

ding. The output features of the feature extractor are set to
256. During training, the value of the learning rate is set to
1e � 3 with cosine annealing to the minimum learning rate
of 1e � 4. The network is optimized with Adam optimizer
with batch size 1. About adaptive refinement, the number
of refinement iterations is empirically set to 12.

Regarding the loss functions, as stated in Eq. 13, we
empirically set �1 = �3 = 1.0,�2 = 100.0. About
the weight for each component of Lfmap in Eq. 8, we
set ↵1 = ↵2 = 1.0. Regarding Sliced Wasserstein dis-
tance and energy-based sliced Wasserstein distance, we set
p = 2, L = 200 for all of our experiments.

12. Additional visualizations
In this section, we provide additional visualizations of our
proposed approach on multiple datasets.

Figure 5. Qualitative results of our method on FAUST dataset.

Figure 6. Qualitative results of our method on SCAPE dataset.

Figure 7. Qualitative results of our method on SHREC dataset.

Figure 8. Qualitative results of our method on SMAL dataset.

Figure 9. Qualitative results of our method on DT4D-H dataset.

Figure 10. Qualitative results of our method on segmentation transfer coarse FAUST dataset.

Figure 11. Qualitative results of our method on segmentation transfer fine-grained FAUST dataset.

