
MeshPose: Unifying DensePose and 3D Body Mesh reconstruction

Supplementary Material

Eric-Tuan Lê1*† Antonis Kakolyris2* Petros Koutras2 Himmy Tam2 Efstratios Skordos2

George Papandreou2 Rıza Alp Güler2 Iasonas Kokkinos2

1University College London 2Snap Inc.
meshpose.github.io

In this supplementary material, we present additional
results and ablations for our proposed MeshPose system. We
also provide more technical details on our architecture and
its training for reproducibility.

We begin in Section 1 by showing more qualitative results
across multiple image datasets (COCO [21], 3DPW [30],
H36M [7] and 3DOH [35]) to demonstrate the wide ap-
plicability of our approach to multiple scenarios. We also
provide more results on videos to showcase the temporal
stability of our method even without temporal smoothing
post-processing. We refer the readers to our mp4 video pro-
vided in the zip file as our results are best viewed as videos.

Then, in Section 2.1, we ablate - with more metrics - the
design choice for our novel VertexPose module that leverages
DensePose [5] annotations to learn 2d vertex localization.
We show first how our vertex-based representation (Vertex-
Pose) compares to the UV-based representation introduced
in DensePose [5] in terms of DensePose metrics. Then, we
evaluate multiple strategies to aggregate vertex UVs into
pixel UVs to show the superiority of the barycentric UV
aggregation.

In Section 2.2, we further evaluate our system with re-
spect to occlusion on the 3DOH and 3DPW-OCC datasets.
We demonstrate that MeshPose is robust to occlusion and on
par with other methods.

Then, we provide a more comprehensive 2d evaluation
of our approach with other competing methods by reporting
more metrics in Section 2.3.

In Section 2.4, we quantitatively demonstrate our real-
time inference speed on mobile device making our approach
a prime candidate for AR applications.

Finally, in Section 3, we provide further details on our
architecture and its training. We detail the architecture of
our backbone networks, our losses and our decoding strategy
allowing us to predict high resolution meshes from the low-

*Equal contribution
†Work done while interning at Snap Inc.

poly topology used throughout our pipeline.

1. Qualitative Evaluation

1.1. Visualizations on COCO

In Figure 1, we showcase more results on the COCO [21]
dataset. Our approach demonstrates the ability to generate
image-aligned meshes even in challenging scenarios such
as occlusion or truncation of the body, which are common
failure modes for other human mesh recovery systems. Un-
like parametric methods bound to SMPL [23] models, our
non-parametric mesh prediction approach, combined with
DensePose supervision, offers greater flexibility and accu-
rately captures very diverse body shapes that previous mod-
els struggle with.

1.2. Visualizations on 3DPW

We present additional visualizations of our 3D mesh recon-
struction on the 3DPW [30] dataset in Figure 2. In contrast
to COCO [21], 3DPW showcases fewer occlusions, resulting
in more full body meshes, and we thus focus our visualisa-
tions on 3DPW occluded subset. We show that our 3D mesh
reconstruction is also competitive in these scenarios with
more accurate 2D reprojection (see elbows, shoulders, limbs)
while offering strong depth prediction. We also present the
rendered visibility weights predicted by our system with a
color map ranging from green (fully visible - predicted by
the VertexPose branch) to red (non visible - predicted by the
regression branch).

1.3. Visualizations on H36M

In Figure 3 (top), we display our 3D mesh reconstruction
performance on the H36M [7] motion-capture dataset. We
observe similar performance on this dataset that - similarly
to 3DPW - exhibits only few occlusions.

https://meshpose.github.io
meshpose.github.io

Input PARE CLIFF NIKI Point-HMR Ours

Figure 1. Qualitative comparison on COCO against 4 state-of-the-
art mesh reconstruction systems. MeshPose is consistently more
aligned to the silhouette of the person.

PARE CLIFF NIKI Point-HMR OursInput

Figure 2. Qualitative comparison on 3DPW (occluded subset)
against 4 state-of-the-art mesh reconstruction systems. We also
display the rendered visibility weights predicted by our system with
a color map ranging from green (fully visible) to red (non visible).

1.4. Visualizations on 3DOH

To demonstrate the robustness of our approach with respect
to occlusion, we further showcase 3D mesh reconstruction
visualisations on the 3DOH [35] dataset in Figure 3 (bottom).
We compare our approach to other state-of-the-art methods
in complex occluded scenes which are very common in real-
world applications.

1.5. Visualizations on Internet Videos

To provide a complete qualitative analysis, we also eval-
uate our approach on videos of humans in action [1]. A
concatenated video is available in the supplementary zip
file. We also show a collection of frames in Figure 4 but
we recommend watching the results on the videos. We
demonstrate very strong temporal stability (low jitter) even
when applied frame-by-frame without any post-processing.
In the videos attached, only the detected bounding box is
temporally-smoothed. Our method is lightweight and simple
with real-time inference, making it a prime candidate for AR
applications.

2. Quantitative Evaluation

In this section, we present an additional quantitative analysis.
To isolate and eliminate potential inaccuracies coming from
the bounding box predictor, each network is assessed using
ground truth bounding boxes.

2.1. VertexPose Ablation Study

We provide more metrics for Table 2 introduced in the main
paper. We report the standard Average Precision AP and
Average Recall AR. We also provide AP50 and AP75 which
measure precision at 50% and 75% IoU thresholds, APM

and APL that evaluate precision for medium and large ob-
jects. The same metrics are also used for AR. First, in order
to better understand the impact of training with vertex-based
(VertexPose) representation compared to UV-based (Dense-
Pose [5]) representation, we compare both approaches in
Tab. 1a evaluated in terms of DensePose metrics. For a fair
comparison, we re-trained DensePose with our backbone
and our training settings. We closely follow the DensePose
multi-head architecture introduced in [5]. More specifically,
for each pixel, we predict (i) the foreground segmentation
mask I via the classification branch and (ii) the patch la-
bel c and the corresponding [U, V] on that patch via the
regression branch. The patch label c∗ is predicted by P
a 25-way (24 patches and background) classification unit
c∗ = argmaxc P (c|i) while the UV is predicted by the UV
regressor Rc∗ of the predicted patch c∗, [U, V] = Rc∗(i).
We observe that the VertexPose-based results compare favor-
ably to their DensePose-based counterparts for all metrics,
thus confirming the merit of the proposed approach. The

PARE CLIFF NIKI Point-HMR Ours

H
36

M
3D

O
H

Input

Figure 3. Qualitative comparison on H36M and 3DOH against 4 state-of-the-art mesh reconstruction systems. MeshPose exhibits stronger
2d reprojection accuracy especially on complex regions (elbows, shoulders, limbs).

V
id

eo
 1

V
id

eo
 2

V
id

eo
 3

V
id

eo
 4

Figure 4. Frames extracted from the videos provided in the supple-
mental as mp4. Results are best viewed on videos.

same results are observed across all tested architecture (Mo-
bileNet [27], ResNet [6], HRNet32 and HRNet48 [31]).

In Tab. 1b we analyze the impact of the barycentric in-
terpolation strategy proposed in Section 3.1.1 of the main
paper. As a reminder, to decode the pixel UV, we com-
pute the barycentric combination of the UV values of
the vertices belonging to the face with the largest score
f∗ = argmaxf∈F

∑
n∈f qn. Here qv corresponds to the

per-pixel posterior over vertices:

qv =
exp(sv)∑V
k=1 exp(sk)

(1)

We thus compare our proposed approach to simpler base-
lines: (i) decoding the pixel UV as the UV of the strongest
vertex at any given pixel (‘Nearest’) and (ii) decoding the
UV via argsoftmax over all vertices rather than those of the
strongest triangle (‘Global Average’):

u =
∑
m∈V

βmum, where βm =
qm∑
n∈V qn

(2)

with V the set of all vertices. The evaluation indicates the
merit of the smooth transition between vertices secured by
barycentric interpolation on almost all DensePose metrics.

2.2. Occlusion Evaluation

To further validate the stability of our proposed method
under occlusion, we also conducted evaluation on the object-
occluded benchmark dataset: 3DPW-OCC[30, 35] and
3DOH50K[35]. 3DPW-OCC refers to a new test-set with
occluded sequences from the entire 3DPW dataset, while
3DOH is a 3D human dataset with human activities occluded
by objects, which provides 2D, 3D annotations and SMPL
parameters. For a fair comparison following previous meth-
ods we train our model by including 3DOH without 3DPW
(since some videos of 3DPW-OCC are from the training set).

From the evaluation results shown in Table 2, we see
that the proposed MeshPose performs also very well in oc-
cluded scenarios by achieving state-of-the-art performance

and outperforming approaches that are designed to deal with
occlusion. Moreover, in Figure 3, we show that MeshPose
achieves good mesh reconstructions even in cases with heavy
object-occlusions. These results demonstrate the effective-
ness of our proposed method that is able to deliver pixel-
aligned 3D-mesh reconstructions and at the same time deal
successfully with occlusion.

2.3. 2D Evaluation Benchmark

In Table 3, we expand the analysis from the main paper
with additional evaluations with 2D metrics. For sake of
completeness, we include LVD [4], though this method is
not directly comparable as it has not been trained with in-the-
wild datasets. We present the Average Precision (AP) and
Average Recall (AR) for 2D COCO keypoints in instances
where at least 80% of the keypoints are visible. This 80%
threshold delineates a sub-dataset with instances that are
almost fully visible, but yet remains sufficiently large to
allow for meaningful conclusions. APM and APL measure
medium (area between 322 and 962 pixels in the image) scale
and large scale (area above 962 pixels in the image) object
detection precision, while ARM and ARL assess recall for
medium and large scale objects. Additionally, we provide
the AP and AR metrics for the DensePose task.

Our approach surpasses the other methods in terms of 2D
metrics, showcasing its strong 2D alignment.

2.4. Inference setup and mobile inference

For our desktop inference experiment, we assess the per-
formance speed of the backbone network of each baseline
methods using the original authors’ official implementations.
Each timing was evaluated on the same machine equipped
with a Nvidia Tesla V100 GPU.

Our models are purely convolutional and thus run out-of-
the-box on modern phones with accelerators. We exported
the ONNX [26] versions of our models and computed their
timings (FPS) on an iPhone-12 using the CoreML [3] back-
end, obtaining comparable timings to the GPU-desktop tim-
ings: 97, 99, and 153 FPS for Meshpose, MeshposeS, and
MeshposeXS respectively.

3. Architecture and training details

In order to provide a comprehensive understanding of our
method outlined in the main paper, we present additional
details regarding the design of our pipeline and the training
process. We begin by providing more details on the design of
our backbones in Subsection 3.1. Following that, we include
supplementary details concerning our multi-head decoders
in Subsection 3.2. More precisely, we detail our vertex and
visibility regression branch (3.2.1), our custom silhouette
rendering - both introduced in Section 3.2.1 of the main
paper (3.2.2) and our high-poly mesh upsampler presented

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

DP - MBNet 53.54 91.66 58.29 54.75 53.65 64.09 95.68 75.39 54.89 64.73
SP - MBNet 54.08 93.01 59.41 55.94 54.32 64.46 96.03 76.10 56.24 65.03

DP - ResNet 57.31 93.06 65.60 57.72 57.49 67.51 96.30 80.29 57.87 68.17
SP - ResNet 58.87 93.05 68.34 60.10 58.90 68.73 96.26 82.08 60.14 69.33

DP - HRNet32 61.12 94.84 72.23 61.39 61.41 70.53 97.33 84.26 61.56 71.16
SP - HRNet32 61.24 94.63 72.61 61.68 61.54 70.52 97.10 84.53 61.77 71.13

DP - HRNet48 62.74 95.04 75.39 63.86 63.03 71.95 97.50 86.18 64.11 72.49
SP - HRNet48 63.32 95.12 76.48 64.75 63.63 72.14 97.73 87.07 64.89 72.65

(a) VertexPose (VP) vs DensePose (DP).

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Barycentric 61.24 94.63 72.61 61.68 61.54 70.52 97.10 84.53 61.77 71.13
Closest 59.69 95.10 70.08 61.39 60.01 68.80 97.59 83.24 61.49 69.31

Global Average 33.35 89.58 11.00 37.13 33.61 43.23 94.38 31.79 37.16 43.64

(b) UV aggregation strategy

Table 1. Analysis of VertexPose performance on the DensePose-COCO dataset. We evaluate the impact of the backbone choice and the UV
decoding strategy.

Method 3DPW-OCC ↓ 3DOH ↓
MPJPE PAMPJPE PVE MPJPE PAMPJPE

DOH [35] - 72.2 - - 58.5
CRMH [8] - 78.9 - - -
VIBE [12] - 65.9 - - -
SPIN [14] 95.6 60.8 121.6 104.3 68.3
HMR-EFT [9] 94.4 60.9 111.3 75.2 53.1
HybrIK [16] 90.8 58.8 111.9 40.4 31.2
PARE [13] 90.5 56.6 107.9 63.3 44.3
ROMP [29] - 67.1 - - -
NIKI [17] 88.2 55.3 109.7 38.9 29.2
PLIKS [28] 86.1 53.2 - 51.5 39.3

MeshPose (HRNet32) 89.11 51.81 108.15 60.93 38.18

Table 2. Evaluation of the occlusion robustness of MeshPose com-
pared to other state-of-the-art approaches in object-occluded bench-
mark datasets 3DPW-OCC and 3DOH.

in Section 3.2.3 of the main paper (3.2.3). Finally, in Sub-
section 3.3 we provide more details on our training strategy
including datasets mixing, augmentations and scheduling.

3.1. Backbone architectures

Regarding our main backbone architecture of choice we
employed the HRNet-32 model described in [31], as it is
capable of producing a high-resolution feature map. Only
the high-resolution, stride 4 output features of the last block
are used. Since MeshPose is a multitasking system which
outputs tensors of a large dimensionality, we have modified
the architecture to have an output with more feature channels,
without adding considerable overhead. More specifically,
before the upsampling and the sum-based fusion of the fea-
ture maps from the last block, which have different stride

and feature size, we project all of them to a fixed feature
size of 256 instead of 32 that is used in the original HRNet-
32 implementation. This modification only adds a small
number of parameters, since it is applied only at the end of
the backbone, but it removes the 32-channel bottleneck to
accomodate the MeshPose tasks.

For the Resnet50 [6] and MobileNetV2 [27] variants we
used dilated convolutions on their last block, which gives
features with stride 16, and then we applied a decoder-net
with separable-convolutions and skip-connections from the
previous stages in order to produce the final feature map
with stride 4. We found that this light-weight decoder-net
has much less parameters (due to separable convolutions)
compared to the fully deconvolutional layers that are usually
employed in pose estimation [32].

3.2. Decoders

As explained in Section 3.2 of the main paper, we learn
how to directly regress 3D vertex positions V XY Z

reg for all
vertices. In addition to the 3D positions, we also predict a
visibility label w ∈ [0, 1] for each vertex. The visibility w
indicates whether we should rely on the VertexPose-based
2D position, V XY

sp or fall back to the V XY
reg value. A low w

value implies that the corresponding vertex is occluded or
out-of-crop which means that the VertexPose vertex is likely
incorrect. The final MeshPose vertices are simply computed
as a visibility-weighted average between both predictions:
V XY
mp = V XY

sp w+V XY
reg (1−w). In this subsection, we detail

how the regressed vertices V XY Z
reg are obtained and how we

supervise them together with their visibility predictions w.

Method 2D COCO KeyPoints ↑ 80% DensePose ↑
AP APM APL AR ARM ARL AP AR

pa
ra

m

DaNet [34] 52.60 51.00 54.10 65.20 62.80 66.50 16.42 29.24
HybrIK [16] 31.70 25.40 35.30 47.50 37.10 52.80 20.85 34.44
PARE [13] 56.90 56.30 57.70 67.20 64.80 68.50 30.02 41.54
CLIFF [18] 61.40 58.80 63.70 72.50 68.10 74.70 30.99 41.83
PyMaf [33] 58.00 57.70 58.70 70.00 67.50 71.30 17.62 30.69
LVD [4] 12.20 6.60 13.20 28.90 18.60 29.90 1.03 6.49
NIKI [17] 48.50 44.80 51.10 61.50 55.70 64.50 25.11 37.39

n-
pa

ra
m

Metro [19] 30.40 33.00 29.60 45.10 45.00 45.10 9.28 21.16
Graphormer [20] 35.90 37.00 35.70 49.50 48.20 50.00 13.57 26.20
FastMetro [2] 39.30 40.60 39.30 53.20 52.00 53.80 13.76 26.21
PointHMR [11] 44.40 42.80 46.10 57.30 53.10 59.40 19.58 32.18

ou
rs

MeshPose (HRNet32 [31]) 71.20 67.20 73.70 79.60 74.00 82.50 47.87 57.62
MeshPoseS (ResNet50 [6]) 67.00 63.20 69.50 76.50 70.80 79.40 44.41 54.49
MeshPoseXS (MBNet140 [27]) 63.60 59.00 66.50 73.90 67.90 76.90 38.56 49.20

Table 3. Evaluation of 2D accuracy in COCO-DensePose for both 2D keypoint predictions and DensePose regression.

3.2.1 Coordinate and Visibility Regression

We draw inspiration from [28] and extract the last tensor
F ∈ RC,H4 ,W4 of our CNN backbone with C = 256. As
explained in the main paper, we use 1D convolutions to
generate three feature tensors P = {Px,Py,Pz} ∈ RV×64,
one for each dimensionX , Y , Z and an extra visiblity weight
w ∈ RV , with V the number of vertices.

Px = f1Dx (ψx(avgx,y(F))) (3)

Py = f1Dy (ψy(avgx,y(F))) (4)

Pz = f1Dz (ψz(avgx,y(F))) (5)

and

w = σ(avgz(f1Dz (ψz(avgx,y(F))))) (6)

We first apply an average pooling avgx,y across the spa-
tial dimensions (x, y). Then, we apply two successive 1D
convolutions ψi and f1Di along the indexed dimension i. The
first convolution ψi expands the dimension from C × 1 to
C × C ′ then f1Di transforms the feature tensors to V × C ′

dimension. Finally, for the visibility weight w, we average
across the channel dimension avgz , then apply a sigmoid σ
activation function to map the values between 0 and 1.

To obtain the 3D vertex positions from the learnt fea-
tures {Px,Py,Pz}, we apply argsoftmax over the C ′ = 64
channels. The resulting value of the argsoftmax will thus
be between 0 and 64 and thus needs to be mapped to pixel
positions. We map the range [0, 64] to [−W, 2W] for X ,
[−H, 3H] for Y and [−2W, 2W] for Z. The top left pixel

on the image corresponds to pixel [0, 0]. The new range
expands beyond the image boundary to predict out-of-crop
vertices. We note that to accommodate for selfie-like images,
we consider a larger range for Y ([−H, 3H]): this allows
us to be able to predict the position of leg vertices that will
often lie significantly below the crop.

3.2.2 Custom Silhouette Rendering

The learnt visibility weight w is partly supervised by the
3D localization and the edge losses (see Section 3.2.4 and
Figure 5). We also use a binary-cross entropy loss LW using
the supervision of the mesh pseudo-ground truth. However,
we also want to leverage the ground truth DensePose seg-
mentation masks which provide a suitable signal to learn
visibility with weak supervision. To achieve that, we intro-
duce a novel silhouette rendering module by modifying the
soft rasterization method of SoftRas [22] so that it incorpo-
rates the predicted vertex visibilities. More specifically, for
each pixel i, we compute the silhouette Is by:

Iis = AO({Dj}) = 1−
∏
j

(1− wi
jDi

j) (7)

Here, as in [22], Dj denotes the influence of triangle fj at
pixel i and mostly depends on the distance of triangle j to
pixel i. Contrary to [22], we also multiply the influence Dj

by the visibility weight wi
j of face j at pixel i. wi

j is simply
computed as the linear interpolation between the visibility
weights of the three vertices of face j at pixel i. The newly
added coefficient wi

j modifies the initial rendering pipeline
from [22] to ignore faces with low visibility weight.

xĵ

xî

xk̂

x

vertex loss

j

xi

xk
xk-xi

xk-xiˆ ˆ
edge loss

(a) Edge and Vertex Loss

Joint
Regressors

Joint Localization
Loss(Eq.2)

 GT Joints

(b) Joint Localization Loss

Figure 5. Regularization losses used for 3D mesh supervision.

We use two losses to supervise our rendered silhouette
Is. First, we use a simple L2 loss between our rendered
Is and the corresponding ground truth from the DensePose
annotation IDP

s : L1
Is

= ||Is − IDP
s ||2. The second loss we

introduce is inspired from the boundary loss from [10]:

L2
Is = −

∑
x,y

D(x, y)Is(x, y) (8)

with D the level set of the DensePose ground-truth segmen-
tation boundary. More specifically, D(x, y) is equal to the
distance d between pixel (x, y) and the boundary ∂IDP

s of
the ground-truth segmentation mask - except for pixels (x, y)
outside of the ground truth mask.

D(x, y)

{
d((x, y), ∂IDP

s) if IDP
s (x, y) = 1

0 else. (9)

This loss only penalizes "too small" silhouettes that are not
expanding over the whole ground truth mask. The final
silhouette loss is the combination of the two introduced
losses:

LIs = 100 · L1
Is + L2

Is (10)

To also learn the visibility weight w for out-of-crop ver-
tices, we render the silhouette on a larger crop and pad the
ground truth mask accordingly. This helps the pipeline to
assign low visibility weights to vertices that are not in the
original crop.

3.2.3 High Poly Mesh Upsampler

As mentioned in the main paper, we predict the vertices of a
low-polygon approximation (518 vertices) of our high res-
olution body mesh (6890 vertices). As pointed out in [19],
working on a lower-resolution mesh both reduces memory
usage while improving training stability by limiting corre-
lated vertices. To generate this approximation, we used a
custom-defined mesh to reduce the number of vertices in
undesirable high curvature areas (hands, fingers).

To obtain the high-poly mesh from the low-poly mesh ,
which is the output of the network, we trained a multilayer
perceptron upsampler following the ideas of [15, 19]. We

employed two affine layers to progressively upsample the
low-poly mesh to the high-poly variant (with an intermediate
representation of 1723 vertices as in [19]). We applied an
L1 loss between the ground-truth and the upsampled ver-
tices at each stage, as well as between the GT joints and
the joints that are estimated using a landmarker on the up-
sampled version. We trained the upsampler independently
from the main network using the high-poly mesh pseudo
GT annotations [25] from only COCO, Human 3.6M and
MPI-INF-3DHP datasets to accurately cover a large pose
distribution. Our method is thus agnostic to the high poly
template and only the upsampler would need to be tuned for
a different template to be used.

An additional improvement to the training of the upsam-
pler, compared to previous approaches, is the addition of
synthetic noise during the training to make the upsampler
more robust to noise or to small errors that may be in the
low-poly mesh. More specifically, with probability 0.5 we
randomly added to 25% of the vertices spikes equal to 15%
of their vertex position values (after applying root alignment
to the mesh). In the other case, with probability 0.5 we added
gaussian noise with standard deviation 5% to each vertex
position.

For comparison, a nearest-point-on-triangle, non-learned
upsampler produces slightly worse results (1mm difference
for 3DPW MVE, 2 for DP AP).

3.3. Training

We used a combination of datasets and training signals in
our model training. More specifically, we used a mixture of
COCO and Human Mesh Reconstruction (HMR) datasets.
First, we enriched the COCO (train2017) dataset with mesh
pseudo-annotations and their DensePose annotations. For
the HMR datasets, we combined Human3.6M [7], MPI-INF-
3DHP [24] and 3DPW [30] training sets. For each dataset,
we proceeded to image augmentation with (i) flipping , (ii)
rotation (between −45◦ and 45◦), (iii) scale (between 0.75
and 1.25) and (iv) color augmentations. We followed a ∼
40/60 split between COCO and HMR datasets. To achieve
that, we upsampled each dataset by an associated factor to
control the dataset mixture: 5 for COCO, 4 for Human3.6M,
1 for MPI-INF-3DHP and 2 for 3DPW. We trained with the
Adam optimizer for 200 epochs with a mini-batch size of 96
and a learning rate of 1× 10−3, which is reduced by a factor
of 10 after 100 epochs. The weights of the backbone of our
systems are initialized with pretrained 2D pose estimation
networks. We used Linux machines with 4 Nvidia Tesla
V100 GPUs (16GB) for all of our experiments.

We aggregated the different losses based on the following
weighted linear combination:

L = LBL + Lconsistency + 10 · LW + 0.1 · LV

+LE + 0.1 · LN + LJ + LIs (11)

with LBL the barycentric cross-entropy loss (Section 3.1.2),
Lconsistency the UV consistency loss (Section 3.1.2), LW the
visibility binary cross-entropy loss (Section 3.2.2 - Supple-
mentary), (LV ,LE ,LN) the vertex localization, the edge,
the normal and the joint localization losses (Section 3.2.4)
and LIs the silhouette loss (Section 3.2.2 - Supplementary).

We note that (LV ,LN) are given smaller weights to
downscale the importance of the pseudo-ground truth. Our
system however requires higher weight for LE to remove
mesh artefacts.

References
[1] Pexels. https://www.pexels.com/. Accessed: 2024-

03-29. 2
[2] Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh. Cross-

attention of disentangled modalities for 3d human mesh re-
covery with transformers. In ECCV, 2022. 6

[3] Core ML. https://developer.apple.com/
documentation/coreml. 4

[4] Enric Corona, Gerard Pons-Moll, Guillem Alenyà, and
Francesc Moreno-Noguer. Learned vertex descent: A new
direction for 3d human model fitting. CVPR, 2022. 4, 6

[5] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.
Densepose: Dense human pose estimation in the wild. In
CVPR, 2018. 1, 2

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
4, 5, 6

[7] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE TPAMI, 36(7):1325–1339, 2013. 1, 7

[8] Wen Jiang, Nikos Kolotouros, Georgios Pavlakos, Xiaowei
Zhou, and Kostas Daniilidis. Coherent reconstruction of
multiple humans from a single image. In CVPR, 2020. 5

[9] Hanbyul Joo, Natalia Neverova, and Andrea Vedaldi. Exem-
plar fine-tuning for 3d human pose fitting towards in-the-wild
3d human pose estimation. In 3DV, 2020. 5

[10] Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Eric
Granger, Jose Dolz, and Ismail Ben Ayed. Boundary loss
for highly unbalanced segmentation. In Proceedings of The
2nd International Conference on Medical Imaging with Deep
Learning, pages 285–296. PMLR, 2019. 7

[11] Jeonghwan Kim, Mi-Gyeong Gwon, Hyunwoo Park, Hyuk-
min Kwon, Gi-Mun Um, and Wonjun Kim. Sampling is
Matter: Point-guided 3d human mesh reconstruction. In
CVPR, 2023. 6

[12] Muhammed Kocabas, Nikos Athanasiou, and Michael J Black.
Vibe: Video inference for human body pose and shape esti-
mation. In CVPR, 2020. 5

[13] Muhammed Kocabas, Chun-Hao P. Huang, Otmar Hilliges,
and Michael J. Black. PARE: Part attention regressor for 3D
human body estimation. In ICCV, 2021. 5, 6

[14] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, 2019. 5

[15] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis.
Convolutional mesh regression for single-image human shape
reconstruction. In CVPR, 2019. 7

[16] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,
and Cewu Lu. Hybrik: A hybrid analytical-neural inverse
kinematics solution for 3d human pose and shape estimation.
In CVPR, 2021. 5, 6

[17] Jiefeng Li, Siyuan Bian, Qi Liu, Jiasheng Tang, Fan Wang,
and Cewu Lu. NIKI: Neural inverse kinematics with invertible
neural networks for 3d human pose and shape estimation. In
CVPR, 2023. 5, 6

[18] Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu,
and Youliang Yan. Cliff: Carrying location information in
full frames into human pose and shape estimation. In ECCV,
2022. 6

[19] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end human
pose and mesh reconstruction with transformers. In CVPR,
2021. 6, 7

[20] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh graphormer.
In ICCV, 2021. 6

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 1

[22] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft raster-
izer: A differentiable renderer for image-based 3d reasoning.
ICCV, 2019. 6

[23] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. TOG, 34(6):1–16, 2015. 1

[24] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Olek-
sandr Sotnychenko, Weipeng Xu, and Christian Theobalt.
Monocular 3d human pose estimation in the wild using im-
proved cnn supervision. In 3DV, 2017. 7

[25] Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Neu-
ralannot: Neural annotator for 3d human mesh training sets.
In CVPRW, 2022. 7

[26] Open Neural Network Exchange (ONNX). https://
github.com/onnx/onnx?tab=readme-ov-file.
4

[27] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 4, 5, 6

[28] Karthik Shetty, Annette Birkhold, Srikrishna Jaganathan, Nor-
bert Strobel, Markus Kowarschik, Andreas Maier, and Bern-
hard Egger. Pliks: A pseudo-linear inverse kinematic solver
for 3d human body estimation. In CVPR, 2023. 5, 6

[29] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and Tao
Mei. Monocular, one-stage, regression of multiple 3d people.
In ICCV, 2021. 5

[30] Timo von Marcard, Roberto Henschel, Michael J Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3d
human pose in the wild using imus and a moving camera. In
ECCV, 2018. 1, 4, 7

[31] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

 https://www.pexels.com/
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://github.com/onnx/onnx?tab=readme-ov-file
https://github.com/onnx/onnx?tab=readme-ov-file

Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE TPAMI, 43(10):
3349–3364, 2020. 4, 5, 6

[32] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for
human pose estimation and tracking. In ECCV, 2018. 5

[33] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang,
Yebin Liu, Limin Wang, and Zhenan Sun. Pymaf: 3d human
pose and shape regression with pyramidal mesh alignment
feedback loop. In ICCV, 2021. 6

[34] Hongwen Zhang, Jie Cao, Guo Lu, Wanli Ouyang, and
Zhenan Sun. Learning 3d human shape and pose from dense
body parts. IEEE TPAMI, 44(5):2610–2627, 2022. 6

[35] Tianshu Zhang, Buzhen Huang, and Yangang Wang. Object-
occluded human shape and pose estimation from a single
color image. In CVPR, 2020. 1, 2, 4, 5

	. Qualitative Evaluation
	. Visualizations on COCO
	. Visualizations on 3DPW
	. Visualizations on H36M
	. Visualizations on 3DOH
	. Visualizations on Internet Videos

	. Quantitative Evaluation
	. VertexPose Ablation Study
	. Occlusion Evaluation
	. 2D Evaluation Benchmark
	. Inference setup and mobile inference

	. Architecture and training details
	. Backbone architectures
	. Decoders
	Coordinate and Visibility Regression
	Custom Silhouette Rendering
	High Poly Mesh Upsampler

	. Training

