AZ-NAS: Assembling Zero-Cost Proxies for Network Architecture Search

Supplementary Material

In this supplement, we provide additional results and in-
depth analyses of AZ-NAS on the NDS [18], NAS-Bench-
201 [7], and MobileNetV2 [14, 19] search spaces.

Additional results on the NDS benchmark. The Neural
Design Space (NDS) [18] benchmark provides the ground-
truth accuracies of candidate architectures for several cell-
based search spaces, where each space adopts a distinct set
of candidate operations. We present in Table A the quan-
titative comparison of AZ-NAS with the state of the art [,
13, 15, 21] on the NDS benchmark. For each search space
in NDS, we report a correlation coefficient (Kendall’s 7)
between predicted and ground-truth network rankings, and
an average top-1 accuracy of selected networks on CIFAR-
10 [11]. We can see that AZ-NAS shows superior results
across the search spaces, verifying the generalization abil-
ity of AZ-NAS on various search spaces. On the other hand,
other methods [1, 13, 15, 21] exploiting a single proxy are
either outperformed by or merely comparable to #Params
or FLOPs in terms of ranking consistency w.r.t the perfor-
mance (i.e., Kendall’s 7), indicating that they are less effec-
tive on the NDS benchmark than NAS-Bench-201 [7] (see
Table 1 in the main paper). These results confirm that
assembling various proxies could improve the robustness
against the variability of search spaces.

Reproducibility of training-free NAS methods. In Ta-
ble 2 of the main paper, we compare AZ-NAS with the state
of the art, mainly focusing on the final performance of se-
lected networks. Considering the randomness during the
search phase, e.g., due to a sampling process of candidate
architectures from a large-scale search space [14, 19], it is
also crucial to achieve consistent NAS results over multiple
trials for practical use. We thus evaluate the reproducibility
of AZ-NAS and the state-of-the-art training-free NAS meth-
ods [13, 14] under a fair experimental setting. Specifically,
for each method, we find three network architectures from
scratch with different seed numbers on the MobileNetV2
search space [14, 19]. We use the same number of search
iterations (100K) and FLOPs constraint (450M) for all the
methods for a fair comparison. We train selected networks
on ImageNet [5] with a simplified training scheme used
in [13] to reduce the training cost. Compared to the train-
ing setting for the experiments in Table 2 of the main pa-
per, the simplified one reduces training epochs from 480
to 150, while not incorporating the teacher-student distilla-
tion [10] and advanced data augmentation techniques (e.g.,
AutoAugment [4], MixUp [22], and RandomErase [24]).
We present in Table B the average and standard deviation

Table A. Quantitative comparison on the NDS [18] benchmark.
For each search space, we report Kendall’s 7 (KT) using all candi-
date architectures. We also present average and standard deviation
of test accuracies (Acc.) for selected networks on CIFAR-10 [11],
which are obtained over 5 random runs. To this end, we randomly
sample 1000 candidate architectures for each run and select an op-
timal one among them based on each training-free NAS method.

ENAS Amoeba NASNet
Method
KT Acc. KT Acc. KT Acc.
#Params 0.411 9294 +£1.26 0.241 76.77 +37.3 0.289 92.56 + 1.10
FLOPs 0.409 9294 +£1.26 0.239 76.77 +37.3 0.276 92.56 + 1.10

Synflow [1,21] 0.116 67.90 +28.9 -0.076 87.70 +8.29 0.007 79.98 £ 25.0
NASWOT [15] 0.375 93.56 £1.55 0.192 92.89 +0.29 0.286 93.55 £ 0.93
ZiCo [13] 0.200 92.19 £ 1.15 -0.016 92.25 4 0.60 0.089 92.72 & 0.88
AZ-NAS 0.495 94.41 +0.13 0.386 93.75 +0.24 0.426 93.72 + 0.50

Table B. Comparison of the reproducibility for the state-of-the-
art training-free NAS methods [13, 14] and ours on the Mo-
bileNetV2 [19] search space [14]. For each method, we report the
average and standard deviation values of top-1 validation accura-
cies on ImageNet [5], obtained over three random runs starting
from the search phase, together with the search costs in terms of
GPU hours. The results of [13, 14] are obtained using the official
code provided by the authors.
t Architectures provided by the authors.
* An architecture found with a different FLOPs budget (i.e., 400M).

Search cost

Method FLOPs Top-1 acc. (GPU hours)
ZenNAST [14] 410M" 75.87 -
ZiCo' [13] 448M 76.07 -
ZenNAS [14] 458M £ 1.6M 73.76 £ 1.32 4.9
ZiCo [13] 450M + 5.0M 72.46 +0.84 15.7

AZ-NAS (Ours) 462M + 1.5M 76.46 £ 0.06 10.0

values of top-1 validation accuracies on ImageNet for se-
lected networks. While the network architectures provided
by the authors of ZenNAS [14] and ZiCo [13] show decent
performance, we could not reproduce comparable results
within three random runs, suggesting that these methods
lack reproducibility. On the contrary, AZ-NAS outperforms
the others by significant margins in terms of the average
accuracy, while showing the lowest deviation, demonstrat-
ing its ability to find high-performing networks consistently
across multiple runs. We can also see that the relative order
of the search costs, measured under a fair search configu-
ration using the same machine, is aligned with the one in
Table 1 of the main paper, and AZ-NAS offers a good com-
promise between the NAS performance and search cost.

Visualization of ranking consistency. We present in
Fig. A a visual comparison between the training-free NAS

#Params (t=0.504, p=0.676) Synflow (t=0.546, p=0.737) NASWOT (t=0.558, p=0.738) TE-NAS (7=0.505, p=0.695)

o o o o N
£ 1000 ll 0 £ 1000 £ 1000 £ 1000 e 4 3
= 800 ° = 800 ¥ = 800 = 800 e,
ARHIE R AW e LA
2 600 i L3 2 600 L2 2 2T 2 600 2 600 A, 2 &
=1 o e 4 = sl = 2 5) - P
19 r [7] l ‘ [(9] 19 .
c ’ e T c % . S Pl c 2 v} 3 .
£ 400 H $ = £ 400 $80 3 A £ 400 £ 400 RS .‘t;.
g cef ey g 3,0: Ao g g w3 B DUNL
S 2001 °® : l i - T 200 W o NS .Q'.; S, T 200 T 200 - & L Y SRR
= s = Ve [. = = e, b oo
ol byt o T e NE 2
(C] 0 ® . . e [C] 0 . o 0 (C] 0 .
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Predicted network ranking Predicted network ranking Predicted network ranking Predicted network ranking
(a) #Params. (b) Synflow [21]. (c) NASWOT [15]. (d) TE-NAS [3].
ZenNAS (1=0.268, p=0.359) GradSign (1=0.575, p=0.764) ZiCo (t=0.566, p=0.759) AZ-NAS (1=0.715, p=0.894)
2 2 21000 o 21000 :
= = = o8 =
< < < 5, <
c ° e o c
¥ ¥ x 5 a5 . ¥
o] <] » 5}
3 3 2 ° 3
R Y ey AT
£ £ £ 400 TRALLY kol ¢
= > =3 ” ‘ } . =
5 5 5 -~ "e, e L &
2 2 2 200 oP3te 2
3 3 3 3 AR E
[C] (6} [CIE} . [C]
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Predicted network ranking Predicted network ranking Predicted network ranking Predicted network ranking
() ZenNAS [14]. (f) GradSign [23]. (g) ZiCo [13]. (h) AZ-NAS (Ours).

Figure A. Visual comparison of training-free NAS methods in terms of predicted network ranking (z-axis) vs. ground truth (y-axis) on
ImageNet16-120 of NAS-Bench-201 [7]. We report the correlation coefficients between them in terms of Kendall’s 7 and Spearman’s p,
denoted by 7 and p, respectively.

Expressivity (t=0.527, p=0.725) Progressivity (t=0.498, p=0.678) Trainability (t=0.398, p=0.560)
o 1000 o 1000 o 1000
£ 1000 £ 1000 £ 1000
X v X~
c c c
o 800 800 e 800 800 e 800 800
=< < =
o o o
2 600 600 2 600 600 2 600 600
QJ 9 [
c i= i=
£ 400 400 S 400 400 S 400 400
=3 =3 =]
ot iy iy
2 200 200 2 200 200 B 200 200
3 =3 3
[[o
G] 0 U] 0 o 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Predicted network ranking Predicted network ranking Predicted network ranking
(a) s¢. (b) s”. (©)s7.
Complexity (t=0.502, p=0.676) AZ-NAS (Linear) (t=0.673, p=0.865) AZ-NAS (1=0.715, p=0.894)
o 1000 o 1000 o 1000
£ 1000 I|] £ 1000 £1000
X o v X~
< H ' [8 g
= 800 = ? ' 800 < 800 800 < 800 800
= $ i H ¥ ¥
g il i i g g
2 600 - . < i3, 600 2 600 600 2 600 600
9] i H s 9] 9]
f=4 H ' . 1 M : f= f=
£ a00f 30150 | 400 £ 400 400 £ 400 a00
2 B C] ay 2 2
5 i1 ..! H I ! 5 5
] s 8
2 200 N eej i | ° 200 g 200 200 2 200 200
> [] 88 ¢ a 8 =3 3
< H [o
[CIE] [CRE] o o
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Predicted network ranking Predicted network ranking Predicted network ranking
(d) s€. (e) sA% (Linear ranking aggregation). (f) sA% (Non-linear ranking aggregation).

Figure B. Visual comparison of the zero-cost proxies of AZ-NAS ((a)-(d)), and the linear and non-linear ranking aggregation methods ((e)
and (f)), in terms of predicted network ranking (z-axis) vs. ground truth (y-axis) on ImageNet16-120 of NAS-Bench-201 [7]. The colors of
the points, ranging from light-yellow to dark-blue, correspond to the network ranking in (f) predicted by the AZ-NAS score. (Best viewed
in color.)

methods [3, 13-15, 21, 23] and ours, where each plot shows Bench-201 [7]. For visualization, we exploit the same 1042
the predicted network ranking (z-axis) vs. the ground- candidate architectures for all the methods, evenly sampled
truth network ranking (y-axis) on ImageNet16-120 of NAS- according to the test accuracy on ImageNet16-120. From

Table C. Comparison of AZ-NAS using different network initial-
ization methods. We report correlation coefficients (Kendall’s 7)
between predicted and ground-truth network rankings on NAS-
Bench-201 [7]. For other experiments using convolutional neural
networks, we adopt the Kaiming normal initialization with a fan-in
mode by default (highlighted by a gray color).

Table D. Comparison of AZ-NAS using different batch sizes in the
search phase. We report the correlation coefficients (Kendall’s 7)
between predicted and ground-truth network rankings on NAS-
Bench-201 [7]. For other experiments, we adopt the batch size of
64 by default (highlighted by a gray color).

. Runtime
Initialization method CIFAR-10 CIFAR-100 IN16-120 Baichsize CIFAR-10 CIFAR-100 INI6-120 (g/arch)
Kaiming normal (fan-in) 0.741 0.723 0.710 8 0.730 0.709 0.687 37.33
Kaiming normal (fan-out) 0.754 0.733 0.724 16 0.736 0.717 0.701 39.39
Xavier normal 0.754 0.732 0.724 32 0.740 0.721 0.708 39.78
Normal (std=0.1) 0.740 0.715 0.709 64 0.741 0.723 0.710 42.71
Uniform ([-0.1, 0.1]) 0.730 0.703 0.702 128 0.741 0.724 0.710 54.32

Figs. A(a)-(g), we can see that previous training-free NAS
methods produce incorrect predictions frequently, such as
highly-ranked networks with low ground-truth performance
that can be found in the bottom-right regions of the plots,
making it difficult to discover a high-performing network
accurately. On the other hand, the network ranking pre-
dicted by AZ-NAS in Fig. A(h) shows the strongest corre-
lation with the ground truth, with the points concentrated
closely around the y = z line in the plot, demonstrating the
superiority of our method.

We also compare in Fig. B the network rankings obtained
with each of the zero-cost proxies of AZ-NAS, and the ag-
gregated ones using either linear or non-linear methods on
ImageNet16-120 of NAS-Bench-201. We can observe in
Figs. B(a)-(d) that the network rankings estimated by a sin-
gle proxy alone show weak consistency w.r.t the ground
truth. For example, the proxies in Figs. B(a)-(d) often as-
sign high scores for low-performing networks (e.g., bottom-
right regions of Figs. B(c) and (d)) or low scores for high-
performing networks (e.g., top-left regions of Figs. B(b)
and (c)). By combining the proxies into the AZ-NAS score
in Fig. B(f), we can improve the ranking consistency sub-
stantially. We can find that the yellow-green and green-
blue points near the bottom-right and top-left regions in
Figs. B(a)-(d) are located closely to the y = « line in
Fig. B(f), suggesting that the misaligned rankings estimated
by individual proxies are corrected by assembling. By com-
paring the results obtained with the linear and non-linear
ranking aggregation methods in Figs. B(e) and (f), respec-
tively, we can also see that the non-linear one makes the
ranking consistency much stronger, while correcting erro-
neous predictions (see yellow-green points in the bottom-
right region of Fig. B(e)), clearly demonstrating the effec-
tiveness of our non-linear ranking aggregation method.

Robustness to various initialization methods. To ver-
ify the robustness of AZ-NAS against network initialization
methods, we compare the NAS performance by initializ-
ing weight parameters from Kaiming normal [9], Xavier
normal [8], normal, or uniform distributions. We pro-
vide the results in Table C in terms of the ranking consis-

tency (Kendall’s 7) w.r.t the ground-truth performance on
NAS-Bench-201 [7]. We can see that AZ-NAS shows satis-
factory NAS results consistently, regardless of the types of
initialization methods. Note that we simply adopt Kaiming
normal with a fan-in mode implemented in PyTorch [16]
as our default initialization method for the experiments us-
ing convolutional neural networks. We can further improve
the NAS performance when exploiting other initialization
methods, such as Kaiming normal with a fan-out mode or
Xavier normal.

Comparison using various batch sizes for search. We
present in Table D the ranking consistency (Kendall’s 7)
of AZ-NAS w.r.t the performance on NAS-Bench-201 [7]
using different batch sizes in the search phase, in order to
understand how AZ-NAS is affected by a batch size. We
can see that AZ-NAS achieves good NAS performance even
when a small batch size (i.e., 8 in the first row) is used for
search. As we increase the batch size, the ranking consis-
tency gradually improves at the expense of additional run-
time. We can observe that the batch size of 64 provides the
best trade-off between runtime and ranking consistency, and
we adopt this as a default setting for other experiments.

Intercorrelation and complementary features. AZ-
NAS is built upon the idea that assembling multiple zero-
cost proxies can significantly boost the NAS performance.
However, naively assembling previous zero-cost proxies
might be less effective, mainly due to a lack of complemen-
tary features. To investigate this, we analyze in Fig. C in-
tercorrelation between network rankings estimated by zero-
cost proxies on ImageNet16-120 of NAS-Bench-201 [7].
We also compare in Fig. D the ranking consistency w.r.t
the performance on ImageNet16-120 of NAS-Bench-201,
where network rankings predicted by two of the proxies in
the = and y-axes are integrated.

From these results, we have the following observations:
(1) We can see in Fig. C that many existing zero-cost prox-
ies, especially the ones exploiting gradients (e.g., Grad-
Sign [23], ZiCo [13], and Synflow [21]), predict similar
network rankings that are strongly correlated to each other.

1.0
0.40

Accuracy

#Params 045 040 0.37 0.44 038 0.15
GradSign 0.46 o.35-o.37 0.36 0.22 0.8
ZiCo 0.47 o.35-o.33 0.31 0.26
Synflow 042 032 047 030 031 024
NASWOT 043 035 0.38 029 0.31 06
Snip 0.40 0.45 0.46 0.47 0.42 0.45 0.04 0.30 0.09 0.45
TE—NAS-0.40 0.35 0.35 0.32 0.43 -0.00 0.44 020 0.39 | 0.4
ZenNAS 0.30 0.37 -- 047 035 -0.01 0.10 0.18 0.36
sf-o.44 037 033 0.30 0.38 0.17 0.44
s -0.38 036 031 0.31 0.29 0.30 0.22 0.2
s” 041 0.15 022 026 0.24 031 009 020 0.18
s (rLops) | 052 [ERRJEREN U0 0556 0.50 0.45 039 0.36 o0
3 E E & 32 g z
< ** [G) =z %

Figure C. Correlation analysis of various zero-cost proxies and ours on ImageNet16-120 of NAS-Bench-201 [7]. We report correlation
coefficients (Kendall’s 7) for the pairs of two network rankings estimated by the zero-cost proxies in the z- and y-axes, respectively.

#Params | 0. . . 0.60 0.59 0.65 0.70
GradSign 0.69 0.65 0.66
ZiCo 0.70 0.67 0.64 | 0.60 0.65
Synflow . 0.71 0.66 0.63 [0.59
NASWOT 0.65 0.67 | 0.60 0.62 0.60
Snip
TE-NAS 0.64 0.60 0.60 0.55
ZenNAS 0.68 0.47 0.50
st : 0.68 0.55 OXTRGIC) 050
s” 0.55 0.59 0.59
-0.45
ST 0.47 JXIRGEEN 0.41 O
¢ (FLOPS) 5 Wl 0.60 0.59 0.64
; . . -0.40
E 5 & 3 & & 2 2 v W w7
c 5 N T = v = Z S
©
I a2 - :
n

Figure D. Ranking consistency (Kendall’s 7) w.r.t the performance on ImageNetl16-120 of NAS-Bench-201 [7] obtained with various
combinations of zero-cost proxies. We combine two network rankings, predicted by zero-cost proxies in the x- and y-axes, using the
non-linear ranking aggregation method. The result in the diagonal entry (represented by a black box) is obtained with the single proxy for
the corresponding entry. For each proxy in the y-axis, we specify the best combination providing the highest Kendall’s 7 by a red box in
the corresponding row.

This coincides with the finding that several gradient-based (2) A few zero-cost proxies (e.g., GradSign and ZiCo) show

zero-cost proxies are related theoretically [20], providing strong correlations with #Params. In their implementation,
analogous NAS results. This suggests that these prox- they compute a proxy score for each weight parameter (or
ies lack complementary features, and thus combining them trainable layer), and then obtain the final score of a net-

hardly improves the NAS performance as shown in Fig. D. work by adding all the scores over the weight parameters (or

the trainable layers). This implies that they inherently pre-
fer networks with large #Params, since the final scores are
likely to become higher when a larger #Params are used,
resulting in a limited synergy effect among these proxies
and #Params as shown in Fig. D. (3) In terms of the NAS
performance using a single proxy only, ZenNAS [14] and
Snip [12] show weak ranking consistency w.r.t the perfor-
mance, i.e., Kendall’s 7 of 0.30 and 0.40, respectively. We
can see in Fig. D that they rather degrade the NAS perfor-
mance of several zero-cost proxies (e.g., #Params, Grad-
Sign, ZiCo, Synflow, or NASWOT [15]) after integrating
the network rankings, suggesting that they are less suitable
for an ensemble. On the contrary, while our trainability
proxy (s7) also exhibits a weak correlation with the per-
formance, it can help other proxies to improve the rank-
ing consistency by large margins. This clearly demonstrates
that the trainability proxy captures a useful network trait for
NAS, which is often overlooked by other zero-cost prox-
ies, despite its weak ranking consistency w.r.t the perfor-
mance. (4) We can see in Fig. C that our zero-cost prox-
ies are less correlated with most of the existing ones. We
can also observe in Fig. D that incorporating our proxies
into others boosts the ranking consistency drastically. This
suggests that our proxies offer distinct and useful cues for
training-free NAS that could not be identified by other prox-
ies, highlighting their complementary features. In particu-
lar, the proxies leveraging gradients (e.g., GradSign, ZiCo,
Synflow, and Snip) typically show the best ensemble re-
sults when they are coupled with either the expressivity (s€)
or progressivity (s”) proxies that analyze activations. This
implies that activations and gradients provide different net-
work characteristics useful for training-free NAS, and it is
difficult to achieve good NAS performance when relying
solely on one of them. These results confirm once more the
importance of the comprehensive evaluation of a network
from various and complementary perspectives for effective
training-free NAS. (5) In the case of combining two zero-
cost proxies in Fig. D, NASWOT and TE-NAS [3] could
be good alternatives for improving the NAS performance of
other zero-cost proxies. However, as mentioned in the main
paper, NASWOT is only applicable for networks adopting
ReLU non-linearities, and TE-NAS is computationally ex-
pensive. We can also see that coupling one of the zero-cost
proxies of AZ-NAS with e.g., GradSign, ZiCo, or Synflow
provides better ranking consistency w.r.t the performance,
compared to the combinations among our proxies. Never-
theless, they are outperformed by our AZ-NAS method that
assembles all of our zero-cost proxies, which offers a good
balance between efficiency and the NAS performance with-
out additional complexities (see Sec. 4.2 in the main paper
for details).

Analysis on the trainability proxy. The zero-cost prox-
ies of AZ-NAS assess a network with randomly initial-

Table E. Search objectives with varying target values of the train-
ability score. Note that the trainability score ranges from —oo to
0. We also report the top-1 validation accuracies on ImageNet [5]
for the networks found with corresponding configurations.

& P T C

Name s s s s Top-1 acc.

Maximize
(Close to 0)
Model#2 Maximize Maximize Close to —0.2 Maximize 75.12
Model#3 Maximize Maximize Closeto —0.3 Maximize 74.37
Model#4 Maximize Maximize Closeto —0.4 Maximize 72.68
Model#5 Maximize Maximize Closeto —0.5 Maximize 71.10

Model#1 Maximize Maximize Maximize 76.55

Trainability score Validation accuracy

—— Model#1
70 Model#2
—— Model#3
—— Model#4
—— Model#5

—— Model#1 30
Model#2

o4 — Model#3 20
—— Model#4 10
—05 —— Model#5
0 30 60 90 120 ° 0 20 40 60 80 100 120 140
Epochs Epoch
(a) Trainability scores sT (b) Top-1 validation accuracy.

for every 10 epochs.

Training loss Training accuracy

—— Model#1 —— Model#1

Model#2 Model#2
—— Model#3 —— Model#3
—— Model#4 —— Model#4
—— Model#5 —— Model#5

3.50

3.25

3.00

2.75

2.50

2.25

2.00

175

0 100K 200K 300K 370K 0 100K 200K 300K 370K
Iteration Iteration

(c) Training loss. (d) Training accuracy.

Training loss (warm-up stage) Training accuracy (warm-up stage)

7.0 —— Model#1 40] — Model#1
Model#2 Model#2
6.5 —— Model#3 —— Model#3
—— Model#4 —— Model#4
60 —— Model#5 301 Model#s

5.5

5.0

45

4.0

35

0 3K 6K 9K 12K 15K 0 3K 6K 9K 12K 15K
Iteration Iteration

(e) Training loss (f) Training accuracy

(warm-up stage). (warm-up stage).
Figure E. Comparison of the networks with different trainability
scores, where they are found with the search objectives specified
in Table E. We show in (a) and (b) the trainability scores of the
networks and validation accuracy on ImageNet [5] along epochs,
respectively. We also compare in (c)-(f) the training curves of the
networks. (Best viewed in color.)

ized weight parameters. The expressivity and progressivity
proxies could benefit from this setting, since they can eval-
uate the feature space of a network by analyzing diverse
features. That is, the features extracted by a randomly ini-
tialized network could occupy the space to its maximum
capacity as they are randomly distributed along various ori-

nor_conv_3x3

skip_connect

nor_conv_Ix1

C10: 91.94%, C100: 67.23%, IN16-120: 39.03%
(E: 100.0%, P: 93.2%, T: 39.4%, C: 87.0%)

C10: 91.95%, C100: 67.32%, IN16-120: 39.89%
(E: 99.9%, P: 94.6%, T: 46.8%, C: 70.2%)

nor_conv_1x1

C10: 91.93%, C100: 66.99%, IN16-120: 38.89%
(E: 99.8%, P: 91.1%, T: 38.3%, C: 42.6%)

(a) Top-3 architectures selected with s€.

nor_conv_1x1

nor_conv_3x3

C10: 93.70%, C100: 71.05%, IN16-120: 42.50%
(E: 93.9%, P: 89.4%, T: 37.9%, C: 100.0%)

nor_conv_3x3
avg_pool_3x3

nor_conv_3x3

C10: 93.23%, C100: 70.85%, IN16-120: 36.60%
(E: 74.8%, P: 57.6%, T: 22.2%, C: 99.9%)

nor_conv_3x3

nor_conv_3x3

nor_conv_3x3
C10: 93.34%, C100: 70.52%, IN16-120: 42.90%
(E: 95.1%, P: 82.5%, T: 44.5%, C: 99.8%)

(d) Top-3 architectures selected with s€.

C10: 92.58%, C100: 68.89%, IN16-120: 42.93%
(E: 78.6%, P: 100.0%, T: 87.0%, C: 87.0%)

skip_connect |

nor_conv_3x3

C10: 92.71%, C100: 68.90%, IN16-120: 41.56%
(E: 80.5%, P: 99.9%, T: 85.3%, C: 42.6%)

C10: 92.88%, C100: 69.31%, IN16-120: 42.44%
(E: 81.1%, P: 99.8%, T: 85.6%, C: 56.6%)

(b) Top-3 architectures selected with sP.

nor_conv_1x1

nor_conv_3x3

C10: 91.39%, C100: 67.08%, IN16-120: 39.14%
(E: 81.2%, P: 80.7%, T: 100.0%, C: 90.1%)

avg_pool_3x3

skip_connect

nor_conv_3x3

C10: 92.55%, C100: 68.63%, IN16-120: 41.90%
(E: 84.6%, P: 90.0%, T: 99.9%, C: 56.6%)

skip_connect

nor_conv_3x3

avg_pool_3x3

C10: 91.96%, C100: 67.24%, IN16-120: 39.59%
(E: 54.7%, P: 70.1%, T: 99.8%, C: 56.6%)

(c) Top-3 architectures selected with sT.

skip_connect | B

C10: 93.36%, C100: 70.59%, IN16-120: 45.44%
(E: 93.6%, P: 95.9%, T: 99.1%, C: 95.8%)

skip_connect

nor_conv_1x1

C10: 93.03%, C100: 69.99%, IN16-120: 44.67%
(E: 92.4%, P: 92.6%, T: 98.3%, C: 95.8%)

nor_conv_3x3
skip_connect

nor_conv_Ix1

nor_conv_1x1
C10: 93.57%, C100: 70.49%, IN16-120: 45.83%
(E: 93.0%, P: 91.2%, T: 96.5%, C: 98.0%)

(e) Top-3 architectures selected with sAZ.

Figure F. Visualization of the top-3 network architectures found with each zero-cost proxy score of AZ-NAS and the final AZ-NAS score on
NAS-Bench-201 [7]. The green and yellow squares indicate the input and output nodes of a cell, respectively, and the blue ones represent
intermediate nodes. For each architecture, we report the top-1 test accuracies on the CIFAR-10/100 (C10/100) and ImageNet16-120 (IN16-
120) datasets, together with the percentiles for the proxy scores in parenthesis, where 100% indicates the highest ranking. We denote by E,
P, T, and C the expressivity, progressivity, trainability, and complexity proxies, respectively, for brevity.

entations. The complexity proxy measures FLOPs of a net-
work architecture, which remains fixed regardless of train-
ing. Similarly, the trainability proxy evaluates a network at
initialization in terms of stable gradient propagation, focus-
ing on the spectral norm of the Jacobian matrix for a pri-
mary block. Note that the stable gradient propagation of a
network at the initial state has been proven to be crucial for
high performance [8, 9, 17], supporting our idea of scoring
the trainability proxy without training.

To further demonstrate the validity of our approach to
measuring the trainability score at initialization, we perform
an in-depth analysis of the trainability proxy on the Mo-
bileNetV2 search space [14, 19]. Specifically, we select five
distinct architectures by setting different search objectives

of the trainability proxy for the evolutionary algorithm, and
train them with the same training scheme used for the exper-
iments in Table B. We summarize the search configurations
and results in Table E. From the table, we can observe that
the final performance of a network is largely affected by the
trainability score, where a network with a higher trainability
score shows better performance. We also present in Fig. E
how the trainability score changes during training, and its
impact on training and performance, based on the networks
chosen in Table E. We can see from Fig. E(a) that the train-
ability scores are not maintained during training, possibly
because they are affected by weight parameters that keep
changing during training. Nevertheless, the relative ranking
between them is roughly preserved along training epochs.

This suggests that a high trainability score at initialization
is important for a network to achieve better performance, as
evidenced by Fig. E(b). We can also see from Figs. E(c)
and (d) that the better trainability score consistently results
in better training losses and accuracies throughout training
iterations. In particular, we can find in Figs. E(e) and (f) that
the rankings of training losses and accuracies are aligned
with the ranking of the trainability scores even at the very
beginning of training (i.e., the warm-up stage), highlight-
ing the importance of the trainability proxy at the initial
state of a network. This finding also coincides with the con-
cept of learning curve extrapolation [6] or an early stopping
technique for NAS [2]. These results confirm that consid-
ering our trainability proxy at initialization is effective for
training-free NAS, and it plays a significant role in predict-
ing the ranking of candidate networks in terms of the final
performance.

Visualization of selected architectures. We visualize in
Fig. F network architectures chosen by individual zero-cost
proxies of AZ-NAS or the final AZ-NAS score on NAS-
Bench-201 [7]. We select top-3 network architectures for
each proxy among 1042 candidate networks, where the can-
didates are sampled evenly according to the test accuracy
on ImageNet16-120 of NAS-Bench-201. For each architec-
ture, we report the test accuracies on CIFAR-10/100 and
ImageNet16-120, as well as the percentiles of our zero-
cost proxy scores (i.e., 100% indicates that a network ex-
hibits the highest score). We can see from Figs. F(a)-(d)
that relying solely on one of the zero-cost proxies causes
structural biases in the selected architectures. For example,
the expressivity proxy in Fig. F(a) consistently assigns high
scores to networks with a cell structure consisting of a sin-
gle convolution layer with a kernel size of 3 x 3, whereas
the progressivity proxy in Fig. F(b) favors networks stack-
ing convolutional layers with kernel sizes of 1 x 1 and 3 x 3
with an additional skip connection. These proxies also in-
troduce unnecessary intermediate nodes within a cell struc-
ture, whose input or output edges are disconnected. The
complexity proxy in Fig. F(d) tends to prefer networks
in which all the edges of a cell structure are defined as
parametric operations. Such biases prevent us from find-
ing high-performing networks, degrading the NAS perfor-
mance. We can also observe that the networks chosen by
a single zero-cost proxy exhibit low scores for the other
proxies frequently, leading to unsatisfactory test accuracies,
especially on ImageNet16-120 that includes images depict-
ing more complex scenes and objects. This highlights that
exploiting a single proxy solely is insufficient for evaluat-
ing a network without training. In contrast, assembling the
zero-cost proxies in Fig. F(e) allows us to choose networks
highly-ranked for all the proxies, which show high perfor-
mance across the datasets, without suffering from a specific
structural bias.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

[16]

Mohamed S. Abdelfattah, Abhinav Mehrotra, FLukasz
Dudziak, and Nicholas D. Lane. Zero-cost proxies for
lightweight NAS. In Int. Conf. Learn. Represent., 2021. 1
Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil
Naik. Accelerating neural architecture search using perfor-
mance prediction. In Int. Conf. Learn. Represent. Workshop,
2018. 7

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on ImageNet in four GPU hours: A theo-
retically inspired perspective. In Int. Conf. Learn. Represent.,
2021. 2,5

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. AutoAugment: Learning augmentation
strategies from data. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 113-123, 2019. 1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., pages
248-255,2009. 1, 5

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter.
Speeding up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In Int.
Joint Conf. on Artificial Intell., 2015. 7

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the
scope of reproducible neural architecture search. In Int. Conf.
Learn. Represent., 2020. 1,2,3,4,6,7

Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In AIS-
TATS, pages 249-256, 2010. 3, 6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on ImageNet classification. In Int. Conf. Comput. Vis.,
pages 1026-1034, 2015. 3, 6

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. In Adv. Neural Inform.
Process. Syst. Workshop, 2015. 1

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.
1

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
SNIP: Single-shot network pruning based on connection sen-
sitivity. In Int. Conf. Learn. Represent., 2019. 5

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu
Marculescu. ZiCo: Zero-shot NAS via inverse coefficient of
variation on gradients. In Int. Conf. Learn. Represent., 2023.
1,2,3

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-NAS: A zero-shot
nas for high-performance image recognition. In Int. Conf.
Comput. Vis., pages 347-356, 2021. 1,2, 5,6

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crow-
ley. Neural architecture search without training. In Int. Conf.
Mach. Learn., pages 7588-7598, 2021. 1,2, 5

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

(7]

[18]

[19]

(20]

(21]

(22]

(23]

(24]

Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An
imperative style, high-performance deep learning library. In
Adv. Neural Inform. Process. Syst., 2019. 3

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei
Zhang. LipsFormer: Introducing lipschitz continuity to vi-
sion transformers. In Int. Conf. Learn. Represent., 2023. 6
Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,
and Piotr Dolldr. On network design spaces for visual recog-
nition. In Int. Conf. Comput. Vis., pages 1882—-1890, 2019.
1

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 4510-4520, 2018. 1,6

Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Bryan
Kian Hsiang Low. Unifying and boosting gradient-based
training-free neural architecture search. In Adv. Neural In-
form. Process. Syst., pages 33001-33015, 2022. 4

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by it-
eratively conserving synaptic flow. In Adv. Neural Inform.
Process. Syst., pages 6377-6389, 2020. 1,2, 3

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In Int. Conf. Learn. Represent., 2018. 1

Zhihao Zhang and Zhihao Jia. GradSign: Model perfor-
mance inference with theoretical insights. In Int. Conf.
Learn. Represent., 2022. 2,3

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, pages
13001-13008, 2020. 1

