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A. Core part of the code for CDMAD

targets_u? = F.softmax{output

Figure 1. Code for refining pseudo-labels using CDMAD

Fig. 1 presents a core part of the code for CDMAD to
refine the biased pseudo-labels of the base SSL algorithm.
As we can see in Fig. 1, CDMAD is very easy to implement.
We simply need to calculate the logits for an image without
any patterns (solid color image) and then subtract them from
the logits for unlabeled samples. Biased class predictions on
test samples are refined in a similar way.

B. Further related works

Semi-supervised learning (SSL) algorithms use unlabeled
data for training when labeled samples are insufficient. En-
tropy minimization [15] encourages the class predictions on
unlabeled samples to be confident by directly minimizing
entropy or using pseudo-labels [33]. Consistency regular-
ization [40, 42, 46] encourages the class predictions on two
augmented versions of an unlabeled sample to be consis-
tent. FixMatch [45] and ReMixMatch [3] conduct entropy
minimization and consistency regularization using strong
data augmentation techniques [9, 12]. ReMixMatch also
conducts Mixup regularization [2, 48] and self-supervised
learning with rotation [14]. CoMatch [36] proposed graph-
based contrastive learning using embedding and pseudo-
label graphs. Recently, curriculum pseudo-labeling that
considers the learning status for each class was proposed
by FlexMatch [59] and extended in Adsh [16], SoftMatch

[7] and FreeMatch [53].

Class-imbalanced learning (CIL) algorithms mitigate
class imbalance to improve classification performance for
minority classes. Resampling techniques [1, 6, 17, 22] bal-
ance the number of each class samples, and reweighting
techniques [11, 19, 21, 39, 54] balance the loss for each
class. Cao et al. [5] and Ren et al. [43] proposed losses
that minimize a generalization error bound, and Kim et al.
[27], Yin et al. [57] transferred knowledge from the data of
the majority classes to the data of minority classes. Kang
et al. [25] decoupled representation and classifier learning.
Menon et al. [38] proposed post-hoc logit-adjustment and
loss, which is Fisher consistent for minimizing the bal-
anced error. Recently, CIL algorithms based on contrastive
learning [10, 23, 24, 24, 37, 49] and multi-expert learning
[4, 35,51, 56, 60, 61] received considerable attention.

C. Data augmentation techniques

CDMAD uses data augmentation techniques utilized in
FixMatch, ReMixMatch, and previous CISSL algorithms.
Specifically, CDMAD uses random horizontal flipping and
random cropping as weak data augmentation techniques
and uses Cutout [12] and RandomAugment [9] as strong
data augmantation techniques. Random horizontal flipping
and cropping flips and crops images, respectively. We im-
plemented these weak data augmentation techniques us-
ing torchvision.transforms library. Cutout randomly masks
out the square region of the image during training, which
prevents the network from focusing on non-general fea-
tures. The purpose of RandomAugment is to teach the
network invariances. RandomAugment is a data augmen-
tation technique that automatically searches for improved
augmentation policies, where the search space of the pol-
icy consists of many sub-policies, one of which is ran-
domly chosen for each data point at each iteration. A sub-
policy is composed of basic data-augmentation techniques,
such as shearing, rotation, and translation. We imple-



(a) Random horizontal flipping 1

(b) Random horizontal flipping 2

(e) Cutout 1 (f) Cutout 2
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(c) Random cropping 1 (d) Random cropping 2

(g) RandomAugment 1 (h) RandomAugment 2

Figure 2. Example images augmented using each data augmentation technique

mented Cutout and RandomAugment using the code from
https://github.com/ildoonet/pytorch-randaugment. ~Exam-
ple images augmented using each data augmentation tech-
nique are presented in Fig. 2.

D. Training losses of FixMatch [45] and
ReMixMatch [3]

Training losses of FixMatch [45] and ReMixMatch [3] on
a minibatch for labeled set M X and a minibatch for unla-
beled set MU/ can be expressed as follows:

lossp (MX, MU, §,7;0) = Con(MU, §,T;6)

+Sup(MX;0), M

lossgp (MX, MU, G;0) = Miz(MX, MU, g;0) @
+Con(MU, G;0) + Rot(MU,r;0),

where ¢ and ¢ denote the concatenations of ¢, and
@, b = 1,...,uB, respectively, Con(MU,§,T;6) and
Con(MU, ;0) denote the consistency regularization loss
with and without the confidence threshold 7, respectively,
Sup(MUX;0) denotes the supervised loss for weakly aug-
mented labeled data points, Miz(MX, MU, g;0) denotes
the mix-up regularization loss, and Rot(MU, r; @) denotes
the rotation loss with the rotated degree r.

Each loss term in Eq (1) and (2) of the main paper is

detailed as follows:
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where H(-,-) denotes the cross-entropy loss, p;* is one-
hot encoded y;"*, MX' and MU’ are generated by mixup
operation with strongly augmented MX and MU, respec-
tively, mx;" denotes a mixed-labeled image, mp;* denotes
amixed label, muy® denotes a mixed-unlabeled image, miqy
denotes a mixed pseudo-label, R (u}", r) denotes the rotated
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uy® with degree 7, and Py (7|R(uy", r)) denotes the predic-
tion of rotated degree r using network parameters 6’ that
mostly overlap with 6.

E. Illustration of refining biased class predic-
tions on test samples using CDMAD
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Figure 3. Refinement of biased class predictions on test samples
using CDMAD

Fig. 3 presents refinement process of the biased class pre-
dictions on test samples using the CDMAD.

F. Pseudo code of the proposed algorithm

The pseudo code that describes both training and test phases
of the proposed algorithm is presented in Algorithm 1.

G. Performance measures

Following previous CISSL studies, we used balanced ac-
curacy (bACC) [19], geometric mean (GM) [30] as perfor-
mance measures for the experiments in Section 4.2. Each
performance measure is detailed as follows. Balanced ac-
curacy (bACC) is the average of per-class accuracy. When
the test set is class-balanced, bACC equals to the overall
test accuracy. bACC is also referred to as the averaged class
recall in previous CISSL studies [55] and [13]. Geometric
mean (GM) is obtained by multiplying the C'th root of per-
class accuracy, where C' denotes the number of classes. GM
equals to the overall test accuracy when all classes have the
same per-class accuracy.

H. Further details about datasets and experi-
mental setup

CIFAR-10-LT and CIFAR-100-LT are long-tailed

datasets artificially generated from CIFAR-10 and CIFAR-

100 [29], respectively, with N = Nj X (Nc/Nl)%

and My = M; x (Mg/M;)©. For CIFAR-10-LT, we

assumed that ~, is known and equal to 7; while varying
both v; and ~, as 50, 100 and 150. We then assumed that
v 18 unknown and different from ~; while setting v; to
100 and varying =, as 1, 50 and 150. We set N; = 1500
and M; = 3000. For CIFAR-100-LT, we assumed that
v, 18 known and equal to +; while varying both v; and ~,
as 20, 50 and 100. We set N7 = 150 and STL-10-LT is
a long-tailed dataset created from STL-10 [8], where the
number of labeled samples exponentially decreases from
N; to Neo. We conducted experiments with unknown +,,
while varying ~y; as 10 and 20. We set N; to 450 and used
all 100, 000 unlabeled samples. Small-ImageNet-127 is a
down-sampled version of ImageNet-127 [20], created by
grouping ImageNet [44] into 127 classes based on WordNet
hierarchy. The training set of ImageNet-127 consists of
a total of 1,281,167 images and is imbalanced with the
class imbalanced ratio of 286. Fan et al. [13] created two
versions of this dataset by down-sampling the images to
32x32 and 64x64, and randomly selected 10% of the
training samples of each class as a labeled set and used the
remaining as an unlabeled set. We conducted experiments
on both versions under the assumption that -,, is known and
equal to +;. Similar to Fan et al. [13], Wei et al. [55], we
conducted experiments using only FixMatch because of an
excessive training cost. The test set of Small-ImageNet-127
is also class-imbalanced.

We used the Adam optimizer [28]. We used the expo-
nential moving average (EMA) of the network parameters
for each iteration to evaluate the classification performance.
We used Wide ResNet-28-2 [58] as a deep CNN for CIFAR-
10-LT, CIFAR-100-LT, and STL-10-LT, and ResNet-50 [18]
for Small-ImageNet-127.

For the experiments using FixMatch, we set the mini-
batch size B to 32, relative size of the unlabeled to labeled
minibatches p to 2, and learning rate of the optimizer to
1.5 % 10~3. We trained FixMatch for 500 epochs, where 1
epoch= 500 iterations. For the experiments using ReMix-
Match, we set the minibatch size B to 64, relative size
of the unlabeled to labeled minibatches p to 2, and learn-
ing rate of the optimizer to 2 * 1073, We trained ReMix-
Match for 300 epochs. For the experiments on CIFAR-
100, we set the weight decay parameter of L2 regulariza-
tion (for EMA parameters) to 0.08 because CIFAR-100 has
significantly many classes compared to the total number of
training samples. For the experiments on CIFAR-10, STL-
10, and Small-ImageNet-127, we set the weight decay pa-
rameter of L2 regularization to 0.04 when the number of
training samples is smaller than 3 * 10, while we set it to
0.01 and 0.02 for FixMatch and ReMixMatch, respectively,
when the number of training samples is larger than 3 * 10%,
because L2 regularization becomes ineffective as the num-
ber of training samples increases. We confirmed that the
training of the proposed algorithm took less time than the



Algorithm 1 Pseudo code of the proposed algorithm

Input: Labeled set X', unlabeled set U, test set X'*¢%t, network parameters 6
Output: Refined class predictions on test samples f; (zt5") fork =1,..., K

while training do

Generate minibatches MX = {(z}*,y;"):be (1,...,B)} C Xand MU = {(uj*) : be (1,...,uB)} CU
Produce logits for a solid color image gy (Z)
Produce logits for weakly augmented unlabeled samples gg (v (uj*)) forb=1,...,uB
Obtain refined logits gj (o (up*)) = go (a (u)’)) — go (Z) forb=1,...,uB
Obtain refined pseudo-labels ¢ = ¢ (g (o (uj?))) forb=1,...,uB
if Base SSL==‘FixMatch’ then
loss}. = lossp (MX, MU, q*,0;6)
AB x Vglossy,, 0+ 0+ A0
end if
if Base SSL==‘ReMixMatch’ then
Produce class probabilities on wealy augmented labeled samples Py (y|a (z}*)) forb=1,..., B

CEloss = CrossEntropy (py", Ps (y|o (x})))
losst, = lossp (MX, MU, ¢*;0) + C'Eloss
A8 < Vglossy, 0+ 60+ A0
end if

end while

Produce logits for a solid color image go (Z)

Produce logits for test samples gy (z4°*") fork =1,..., K

Obtain refined logits g; (zi°5") = gg (24°")

Obtain refined class predictions f; (z{°*") = arg max, g; (=

k

—go (D) fork=1,.... K
sty fork=1,..., K

baseline CISSL algorithms. We used random cropping and
horizontal flipping for weak data augmentation and Cutout
[12] and RandomAugment [9] for strong data augmenta-
tion. These augmentation techniques are detailed in Ap-
pendix C. To use CDMAD after network parameters are
stabilized, we trained naive ReMixMatch and FixMatch for
first 100 epochs, and subsequently used CDMAD to refine
pseudo-labels, similar to DARP [26]. We conducted exper-
iments using the GPU server Nvidia Tesla-V100 and 3090ti
and used the Python library PyTorch 1.11.0 and 1.12.1. Our
experiment results can be reproduced using the code in the
supplementary material.

I. Description of baseline algorithms

The classification performance of the CDMAD was com-
pared with those of the following algorithms: 1. vanilla
algorithm - Deep CNN trained with cross-entropy loss, 2.
CIL algorithms - Re-sampling [22], LDAM-DRW [5], and
cRT [25], 3. SSL algorithms - FixMatch [45] and ReMix-
Match [3], and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT [26], CReST, CReST+LA [55], ABC [34],
CoSSL [13], DASO [41], SAW, SAW+LA and SAW+cRT
[31] combined with FixMatch and ReMixMatch. Adsh
[16], DebiasPL [52], UDAL [32] and L2AC [50] combined
with FixMatch. We report the performance of the baseline
algorithms reported in Tables of Lai et al. [31] and Fan et al.

[13] when it is reproducible; the performance measured us-
ing the uploaded code was reported otherwise.

J. Further qualitative analysis
J.1. Case of 1, = v,

In Table 1 of Section 4.2, CDMAD performed better than
the baseline CISSL algorithms when the class distributions
of the labeled and unlabeled sets are assumed to be the
same. To verify whether the pseudo-labels and class predic-
tions on test samples refined by CDMAD contributed to its
superior performance, we conducted two types of compari-
son: 1) pseudo-labels refined by CDMAD vs. true labels of
unlabeled samples, and 2) class predictions refined by CD-
MAD vs. true labels of test samples. These results are also
compared to those from FixMatch and ReMixMatch.

First, Fig. 4 compares the confusion matrices of pseudo-
labels generated by (a) FixMatch, (b) FixMatch+CDMAD,
(c) ReMixMatch, and (d) ReMixMatch+CDMAD trained
on CIFAR-10-LT under v; = 100 and ~y,, = 100. The value
in the ith row and jth column represents the proportion of
the ith class samples classified as the jth class. We can ob-
serve that the pseudo-labels of FixMatch and ReMixMatch
are biased toward the majority classes. Specifically, the data
points in the minority classes (e.g., classes 8 and 9) are of-
ten misclassified into the majority classes (e.g. classes O
and 1). In contrast, Fig. 4 (b) and Fig. 4 (d) show that Fix-



Match+CDMAD and ReMixMatch+CDMAD made nearly
balanced class predictions.

Second, Fig. 5 compares the confusion matrices of the
class predictions on the test set of CIFAR-10 using (a)
FixMatch, (b) FixMatch+CDMAD, (c¢) ReMixMatch, and
(d) ReMixMatch+CDMAD trained on CIFAR-10-LT un-
der v; = 100 and v, = 100. Similar to Fig. 4, Fix-
Match+CDMAD and ReMixMatch+CDMAD made more
balanced predictions across classes.

J.2. Case of v, # v,

In Table 2 of Section 4.2, the proposed algorithm performed
better than the baseline algorithms when the class distribu-
tion of the unlabeled set is assumed to be unknown and ac-
tually differs with that of the labeled set. To verify whether
the pseudo-labels and class predictions refined by CDMAD
contributed to its superior performance, we conducted three
types of comparison: 1) pseudo-labels refined by CDMAD
vs. true labels of unlabeled samples, 2) representations
learned with unrefined pseudo-labels vs. representations
learned with pseudo-labels refined by CDMAD, and 3) class
predictions refined by CDMAD vs. true labels of test sam-
ples. These results are also compared to those from Fix-
Match and ReMixMatch.

First, Fig. 6 compares the confusion matrices of pseudo-
labels generated by (a) FixMatch, (b) FixMatch+CDMAD,
(c) ReMixMatch, and (d) ReMixMatch+CDMAD trained
on CIFAR-10-LT under v; = 100 and , = 1. The value
in the ith row and jth column represents the proportion of
the ith class samples classified as the jth class. We can ob-
serve that the pseudo-labels of FixMatch and ReMixMatch
are biased toward the majority classes. Specifically, the data
points in the minority classes (e.g., classes 7, 8 and 9) are
often misclassified into the majority classes (e.g. classes O
and 1). In contrast, Fig. 6 (b) and Fig. 6 (d) show that Fix-
Match+CDMAD and ReMixMatch+CDMAD made nearly
balanced class predictions.

Second, Fig. 7 compares t-distributed stochastic
neighbor embedding (t-SNE) [47] of representations
obtained for the test set of CIFAR-10 using Fix-
Match, FixMatch+CDMAD, ReMixMatch, and ReMix-
Match+CDMAD trained on CIFAR-10 with 4; = 100 and
Yo = 1 (unknown 7, ), where different colors indicate dif-
ferent classes in CIFAR-10. We can observe that the repre-
sentations obtained using FixMatch+CDMAD and ReMix-
Match+CDMAD are separated into classes with clearer
boundaries compared the those from FixMatch and ReMix-
MatchFrom in Fig. 7 (a) and Fig. 7 (c). This is probably
because CDMAD appropriately refined the biased pseudo-
labels and used them for training, whereas FixMatch and
ReMixMatch failed to learn the representations properly be-
cause they used the biased pseudo-labels for training. These
results demonstrate that the quality of representations can

be improved by using well refined pseudo-labels ( Fig. 6 (b)
and Fig. 6 (d)) for training.

Third, Fig. 8 compares the confusion matrices of the
class predictions on the test set of CIFAR-10 using (a) Fix-
Match and (b) FixMatch+CDMAD trained on CIFAR-10-
LT under ; = 100 and v, = 1. Similar to Fig. 6, Fix-
Match+CDMAD made more balanced predictions across
classes compared to the other algorithms. (Note that the
results using ReMixMatch and ReMixMatch+CDMAD are
presented in Section 4.3.)

K. Further comparison with LA

Because CDMAD can be viewed as an extension of LA
for incorporating awareness of class distribution mismatch,
we compared the classification performance of LA and CD-
MAD for CISSL under the settings that the class distribu-
tions of the labeled and unlabeled sets mismatch. To use
LA for CISSL, we refined pseudo-labels and class predic-
tions on test samples by LA similar to CDMAD. Experi-
mental results are presented in Tab. 1. ReMixMatch+LA
adjusts the logits on inputs by the log of the class distri-
bution of the labeled set by assuming that the class distri-
bution of the unlabeled set is the same as that of the la-
beled set. ReMixMatch+LA* adjusts the logits on inputs
by the log of the class distribution of the whole training set
by assuming that the class distribution of the unlabeled set
is known, although it differs from that of the labeled set.
From Tab. 1, we can observe that ReMixMatch+CDMAD
performed significantly better than both ReMixMatch+LA
and ReMixMatch+LA*. This may be because CDMAD
refined the biased pseudo-labels and class predictions on
test samples more effectively than ReMixMatch+LA and
ReMixMatch+LA* by incorporating awareness of class dis-
tribution mismatch. It should be noted that LA* cannot
re-balance the classifier to an appropriate degree even if
the class distribution of the unlabeled set is known under
the class distribution mismatch setting. This may be be-
cause in SSL, each labeled data point is typically used more
frequently and importantly than each unlabeled data point.
Consequently, the classifier may become biased towards the
class distribution of the labeled set to a greater degree than
the class distribution of the entire training set, while still
being affected by the class distribution of the unlabeled set.

Table 1. bACC/GM on CIFAR-10-LT under ; # u.-

CIFAR-10-LT (v, = 100)

Algorithm Yo =1 Yu =50 7, =150
ReMixMatch+LA 76.6/66.8 69.9/52.6 70.5/42.7
ReMixMatch+LA* 69.2/54.0 73.7/70.8 58.3/27.4

ReMixMatch+CDMAD  89.9/89.6 86.9/86.7 83.1/82.7
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Figure 4. Confusion matrices of pseudo-labels generated by (a) FixMatch, (b) FixMatch+CDMAD, (c) ReMixMatch, and (d) ReMix-
Match+CDMAD trained on CIFAR-10-LT under +; = 100 and ~,, = 100.
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Figure 5. Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) FixMatch, (b) FixMatch+CDMAD, (c)
ReMixMatch, and (d) ReMixMatch+CDMAD trained on CIFAR-10-LT under ~; = 100 and ~,, = 100.

L. Fine grained experimental results

To verify that CDMAD improves classification per-
formance for minority classes, we performed ex-
periments using FixMatch/ ReMixMatch and Fix-
Match/ReMixMatch+CDMAD on CIFAR-10-LT and
measured the accuracy for Many/Medium/Few groups
separately (for CIFAR-10-LT, we set the first three classes
as many shot groups, then next four classes as medium shot
groups, and then last three classes as few shot groups). We
also measured the fine grained classification performance
of FixMatch/ReMixMatch+CoSSL [13] on CIFAR-10-LT
and compared them with those of CDMAD for comparison
with a recent CISSL algorithm. The results are summa-
rized in Tab. 2, Tab. 3, and Tab. 4. We can observe that
FixMatch+CDMAD and ReMixMatch+CDMAD greatly
improved accuracy for few shot groups with only slightly
decreased accuracy for many shot groups compared to
FixMatch and ReMixMatch. We can also observe that Fix-
Match/ ReMixMatch+CDMAD achieved better medium
and few shot classification accuracies than FixMatch/
ReMixMatch+COSSL. These results demonstrate that
CDMAD effectively relieves class imbalance.

Table 2. Fine grained experimental results under v; = 7, = 100.

CIFAR-10-LT (y; = 7, = 100)

Algorithm Overall Many Medium Few
FixMatch 72.5 95.0 74.6 47.3
FixMatch+CDMAD 83.6 91.9 82.2 77.2
ReMixMatch 74.3 96.7 77.8 47.2

ReMixMatch+CDMAD 85.5 90.1 84.8 81.8

Table 3. Fine grained experimental results under v; = 100, and
Yu = 1.

CIFAR-10-LT (; = 100, v, = 1)

Algorithm Overall Many Medium Few
FixMatch 70.2 96.3 7.7 34.0
FixMatch+CDMAD 87.5 95.6 86.4 80.9
ReMixMatch 65.4 96.6 70.8 27.0

ReMixMatch+CDMAD 89.9 96.5 87.8 86.0
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Figure 6. Confusion matrices of pseudo-labels generated by (a) FixMatch, (b) FixMatch+CDMAD, (c) ReMixMatch, and (d) ReMix-
Match+CDMAD trained on CIFAR-10-LT under v; = 100 and y,, = 1.
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Figure 7. t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b) FixMatch+CDMAD, (c) ReMixMatch,
and (d) ReMixMatch+CDMAD trained on CIFAR-10-LT under +; = 100 and ,, = 1.
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Figure 8. Confusion matrices of the class predictions on the test
set of CIFAR-10 using (a) FixMatch and (b) FixMatch+CDMAD
trained on CIFAR-10-LT under ; = 100 and y,, = 1.

M. Comparing CDMAD with DASO

Because classification performance of DASO were mea-
sured under slightly different settings from ours, it was diffi-
cult to fairly compare their classification performance with
that of CDMAD in the main paper. Nevertheless, in the
case of DASO, we conducted experiments in the same set-

Table 4. Fine grained experimental results under y; = ., = 100.

CIFAR-10-LT (y; = 7, = 100)

Algorithm Overall Many Medium Few

FixMatch+CoSSL 83.2 93.4 81.1 75.8
FixMatch+CDMAD 83.6 91.9 82.2 77.2

ReMixMatch+CoSSL 84.1 91.7 82.1 79.1
ReMixMatch+CDMAD 85.5 90.1 84.8 81.8

Table 5. bACC/GM on CIFAR-10-LT under v = v; = .

CIFAR-10-LT (y = v = 74)

Algorithm v =50 v =100 v =150
FixMatch+DASO 81.8/81.0 75.7/74.0 72.0/68.9
FixMatch+DASO+LA 84.1/83.7 79.4/78.8 76.5/75.5
FixMatch+CDMAD 87.3/87.0  83.6/83.1 80.8/79.9
ReMixMatch+DASO 82.5/81.9 76.0/73.9 70.8/66.5

ReMixMatch+DASO+LA  85.9/85.7 82.8/82.4 79.0/78.4
ReMixMatch+CDMAD  88.3/88.1 85.5/85.3 82.5/82.0

ting as ours using the official code in github. The classifica-
tion performance of DASO is summarized in Tab. 5, Tab. 6,
and Tab. 7. From Tab. 5, Tab. 6, and Tab. 7, we can ob-



Table 6. Comparison of bACC/GM on CIFAR-10-LT and STL-10-LT under 7y; # u.

CIFAR-10-LT (; = 100)

STL-10-LT (v, =Unknown)

Algorithm Yo =1 Yu =50 7y, =150 7 =10 7 =20
FixMatch+DASO 86.4/86.0 79.1/78.2 74.2/71.6 68.4/65.3 62.1/ 58.9
FixMatch+DASO+LA 86.2/85.8 81.7/81.2 78.0/77.0 68.9/66.3 66.0/ 64.6
FixMatch+CDMAD 87.5/87.1 85.7/85.3 82.3/81.8 79.9/78.9 75.2/73.5
ReMixMatch+DASO 89.6/89.3 79.6/77.8 72.3/69.0 75.1/73.6 66.8/ 61.8
ReMixMatch+DASO+LA  80.6/77.7 84.8/84.5 79.7/79.2 78.1/77.3 75.3/ 74.0
ReMixMatch+CDMAD  89.9/89.6 86.9/86.7 83.1/82.7 83.0/82.1 81.9/80.9

Table 7. Comparison of bACC on CIFAR-100-LT.

CIFAR-100-LT (v = v = )

Algorithm vy=20 =50 ~=100
FixMatch+DASO 45.8 39.2 33.9
FixMatch+DASO+LA 46.2 39.9 34.5
FixMatch+CDMAD 54.3 48.8 44.1
ReMixMatch+DASO 51.5 43.0 38.2

ReMixMatch+DASO+LA  52.8 45.5 40.3
ReMixMatch+CDMAD 57.0 511 44.9

serve that the proposed algorithm outperforms DASO. From
Tab. 6, we can also observe that combining DASO with LA
degrades the classification performance when the class dis-
tributions of the labeled and unlabeled sets severely differ.
This may be because the LA considers only the class distri-
bution of the labeled set when the class distribution of the
unlabeled set is unknown. These results show the impor-
tance of re-balancing the classifier by considering the class
distribution of the unlabeled set. These results demonstrate
the effectiveness of CDMAD.
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