
Compact 3D Gaussian Representation for Radiance Field - Supplementary
Materials

Joo Chan Lee1 Daniel Rho2 Xiangyu Sun1 Jong Hwan Ko1B Eunbyung Park1B

Sungkyunkwan University1, KT2

Appendix

1. Implementation Detail

We retained all hyper-parameters of 3DGS and trained mod-
els during 30K iterations, and we set the codebook size C
and the number of stages L of R-VQ to 64 and 6, respec-
tively. The neural field for view-dependent color uses hash
grids with 2-channel features across 16 different resolutions
(16 to 4096) and a following 2-layer 64-channel MLP. Due
to the different characteristics between the real and syn-
thetic scenes, we adjusted the maximum hash map size and
the hyper-parameters for learning the neural field and the
mask. For the real scenes, we set the max size of hash maps
to 219, the control factor for the number of Gaussians λm to
5e−4, and the learning rate of the mask parameter and the
neural fields to 1e−2. The learning rate of the neural fields
is decreased at 5K, 15K, and 25K iterations by multiplying
a factor of 0.33. For the synthetic scenes, the maximum
hash map size and the control factor λm were set to 216 and
4e−3, respectively. The learning rate of the mask parameter
and the neural fields were set to 1e−3, where the learning
rate of the neural fields was reduced at 25K iterations with
a factor of 0.33.

2. Fast inference pipeline

The main paper’s analysis shows that our method extends
the overall training time slightly more than 3DGS, owing
to the time for iterating neural fields and for R-VQ search.
However, our approach effectively reduces rendering time
for several reasons. First, the proposed masking strategy
significantly effectively reduces the number of Gaussians,
as demonstrated in our results, leading to reduced training
and rendering times. Second, by precomputing grid features
at the testing phase, we minimize the operational time of the
neural field. Since these grid features, which precede the
subsequent MLP input, are not dependent on the view direc-
tion itself, they can be prepared in advance of testing. This
allows our method to simply process a small MLP for gen-
erating view-dependent colors during testing. Third, in the

testing phase, the time spent searching for suitable geome-
try is eliminated. In a manner similar to precomputing grid
features, we can index the closest codes from multi-stage
codebooks before testing. These strategies collectively en-
able us to achieve a notably faster rendering speed.

Precomputing time. The precomputing involves a sin-
gle iteration of hash grid sampling and indexing using the
trained R-VQ codebooks. This process requires only negli-
gible runtime, 7.1 ms and 17.8 ms for bonsai (indoor) and
bicycle (outdoor) scenes, respectively.

3. Additional ablation study

3.1. Rate-distortion curve based on each proposal

In addition to the ablation study in the main paper, we con-
duct an in-depth analysis on the impact of our contributions:
volume-based masking, compact color representation, and
geometry codebook. As illustrated in Fig. 1, we start with
the standard configuration of our approach and adjust the
compactness level of the three proposals. We control λm,
max hashmap size, and the number of R-VQ stages, respec-
tively, by doubling each hyper-parameter. As the perfor-
mance for the different scenes varies due to their diverse
characteristics, we choose three distinct scenes where our
approach increases, retains, and decreases visual quality
while achieving over 10× compression.

Although the proposed geometry codebook effectively
reduces the storage as validated in the main paper, it shows
poor performance when the diversity of codebooks is ex-
tremely limited. In contrast, our neural field-based color
representation demonstrates remarkable robustness even in
a low-rate condition across the various scenes, indicating
that scaling down the neural field is the best option in envi-
ronments with severe resource limitations.

These results show that the storage need of our method
can be halved with minimal performance loss, and our de-
fault configuration is a well-rounded choice for a wide range
of scenes.

1

29.8

30

30.2

30.4

0 20 40 60 80

Playroom

30.2
30.4
30.6
30.8

31
31.2
31.4
31.6
31.8

32
32.2
32.4

0 20 40 60 80

Bonsai

24

24.2

24.4

24.6

24.8

25

25.2

0 20 40 60 80 100

Bicycle

3DGS: 553 MB

3DGS: 295 MB 3DGS: 1.4 GB

Storage (MB) Storage (MB) Storage (MB)

PS
N

R

Our default setting Control mask Color representation Geometry codebook

Figure 1. Rate-distortion curves evaluated on diverse scenes. Starting with our default model, we methodically adjust the compactness
level of each proposal to evaluate their individual contributions.

Table 1. Performance evaluation of the proposed masking strat-
egy on the bonsai scene. We apply only masking without other
proposals.

Method PSNR SSIM LPIPS #Gauss

3DGS 32.2 0.946 0.181 1245 K

Keep densification 31.7 0.941 0.181 1167 K
Threshold-based mask 31.5 0.937 0.192 956 K

Opacity threshold 32.1 0.944 0.186 845 K
31.9 0.941 0.191 661 K

Proposed masking 32.2 0.944 0.181 643 K

Table 2. Ablation study on the proposed volume-based masking
(bonsai scene). The performance is evaluated after applying ge-
ometry R-VQ and color representation.

Opacity Scale λm #Gaussian PSNR

✓
0.0005 311786 31.50
0.0001 629837 31.86

✓
0.0005 508762 31.89
0.0003 596449 31.97

✓ ✓ 0.0005 601048 32.08

3.2. Effectiveness of the proposed masking

More baselines of masking. Tab. 1 shows the performance
of the proposed masking strategy, compared to straightfor-
ward solutions for reducing Gaussians: 1) keep densifica-
tion during the whole training, 2) prune based on threshold
of opacity and scale, 3) increase the opacity threshold for
pruning. The proposed learnable masking effectively elim-
inates non-essential Gaussians, while other baselines show
poor performance. It is worth noting that the masking pa-
rameter does not require additional storage and effectively

Table 3. Ablation study on represented components by I-NGP
(bonsai scene).

I-NGP representation PSNR Train time #GaussiansOpa. Sca. Rot. Col.

3DGS 32.2 19:21 1245 K

✓ 32.3 24:42 1178 K

✓ ✓ 9.3 29:55 666 K
✓ ✓ 9.3 29:55 559 K

✓ ✓ 25.9 27.37 1692 K

Table 4. Evaluation of R-VQ training strategy using the bonsai
scene.

Train R-VQ PSNR SSIM LPIPS Train #Gauss

1K iter with K-means 32.1 0.939 0.193 24:16 601 K
From initial training 32.0 0.936 0.194 50:38 508 K

reduced Gaussians accelerate the training process and re-
duce both inference memory and storage.
Volume-based masking. We have proposed the learnable
masking of Gaussians based on their volume as well as
transparency. As shown in Tab. 2, masking based on only
Gaussian volume outperforms the method that only con-
siders Gaussian opacity. Moreover, the best results are
achieved when both volume and transparency are taken into
account for masking.

3.3. Usage of I-NGP and R-VQ

Neural fields can represent continuous signals efficiently,
whereas VQ works well for repetitive components. In a 3D
scene, near Gaussians can be expected to share similar col-
ors but are not guaranteed to have a similar shape; rather,
similar shapes can be frequently found in the entire scene.
Therefore, I-NGP is not successfully trained to represent
other attributes except for color, as demonstrated in Tab. 3.

Table 5. Evaluation of GPU memory requirements for our method compared to 3DGS. ’Mem’ indicates the GPU memory requirements.

Scene bicycle bonsai drjohnson playroom

Method PSNR Storage Mem. PSNR Storage Mem. PSNR Storage Mem. PSNR Storage Mem.

3DGS 25.08 1.4 GB 9.4 GB 32.16 295 MB 8.7 GB 29.06 774 MB 7.5 GB 29.87 553 MB 6.4 GB
Ours 24.77 63 MB 7.6 GB 32.08 35 MB 8.3 GB 29.26 48 MB 6.5 GB 30.32 39 MB 5.6 GB

Given this intuition, we have proposed an effective repre-
sentation for each component.

3.4. R-VQ with initial training.

We evaluate the performance when applying R-VQ from the
beginning of the training, as shown in Tab. 4. It shows sim-
ilar performance with the reduced number of Gaussians but
it requires over 2× training time, compared to the proposed
training strategy.

4. Inference memory
Throughout the main paper, we analyze the effectiveness of
our method in terms of the balance between the visual qual-
ity, storage requirement, and rendering speed. Our approach
effectively reduces not only storage needs but also memory
requirements, both of which are key aspects of efficiency.
Tab. 5 depicts the GPU memory requirement for inference
with the visual quality and storage need, evaluated on di-
verse scenes. Our method consistently reduces the GPU
memory requirements by a safe margin, demonstrating its
efficient usage of computing resources.

5. Per-Scene Results
We evaluated the performance on various novel view syn-
thesis datasets. We provide per-scene results for Mip-
NeRF 360 (Tab. 6), Tanks&Temples (Tab. 7), Deep Blend-
ing (Tab. 7), and NeRF synthetic (Tab. 8) datasets.

Table 6. Per-scene results evaluated on Mip-NeRF 360 dataset.

Scene bicycle flowers garden stump tree hill room counter kitchen bonsai Avg.

3DGS

PSNR 25.10 21.33 27.25 26.66 22.53 31.50 29.11 31.53 32.16 27.46
SSIM 0.747 0.588 0.856 0.769 0.635 0.925 0.914 0.932 0.946 0.812
LPIPS 0.244 0.361 0.122 0.243 0.346 0.198 0.184 0.117 0.181 0.222
Train (mm:ss) 34:04 25:33 33:46 27:05 24:51 22:55 22:42 26:08 19:18 24:07
#Gaussians 5,723,640 3,414,994 5,641,235 4,549,202 3,470,681 1,483,653 1,171,684 1,744,761 1,250,329 3,161,131
Storage (MB) 1350.78 805.94 1331.33 1073.60 819.08 350.14 276.52 411.76 295.08 746.03
FPS 63.81 132.03 77.19 108.81 100.92 132.51 146.40 122.07 199.86 120.40

Ours

PSNR 24.77 20.89 26.81 26.46 22.65 30.88 28.71 30.48 32.08 27.08
SSIM 0.723 0.556 0.832 0.757 0.638 0.919 0.902 0.919 0.939 0.798
LPIPS 0.286 0.399 0.161 0.278 0.363 0.209 0.205 0.131 0.193 0.247
Train (mm:ss) 42:36 32:37 45:36 33:43 34:08 24:18 27:41 32:59 24:16 33:06
#Gaussians 2,221,689 1,525,598 2,209,609 1,732,089 2,006,446 529,136 536,672 1,131,168 601,048 1,388,162
Storage (MB) 62.99 51.15 62.78 54.66 59.33 34.21 34.34 44.45 35.44 48.82
FPS 76.41 142.41 89.49 120.96 110.28 183.03 119.52 114.24 196.08 128.05

Ours+PP

PSNR 24.73 20.89 26.72 26.31 22.67 30.88 28.63 30.48 31.98 27.03
SSIM 0.722 0.554 0.831 0.754 0.637 0.918 0.901 0.919 0.937 0.797
LPIPS 0.284 0.399 0.158 0.280 0.363 0.209 0.206 0.130 0.193 0.247
Storage (MB) 42.42 32.05 43.26 33.83 39.08 15.01 15.22 24.39 16.40 29.07

Table 7. Per-scene results evaluated on Tank&Temples and Deep Blending.

Dataset Tanks&Temples Deep Blending

Scene train truck Avg. drjohnson playroom Avg.

3DGS

PSNR 22.07 25.35 23.71 29.06 29.87 29.46
SSIM 0.812 0.878 0.845 0.899 0.901 0.900
LPIPS 0.208 0.148 0.178 0.247 0.247 0.247
Train (mm:ss) 12:18 15:24 13:51 24:22 19:22 21:52
#Gaussians 1,084,001 2,579,252 1,831,627 3,278,027 2,343,368 2,810,698
Storage (MB) 255.82 608.70 432.26 773.61 553.03 663.32
FPS 174.42 145.14 159.78 110.46 154.47 132.47

Ours

PSNR 21.56 25.07 23.32 29.26 30.32 29.79
SSIM 0.792 0.871 0.831 0.900 0.902 0.901
LPIPS 0.240 0.163 0.201 0.258 0.258 0.258
Train (mm:ss) 16:03 20:36 18:20 30:31 24:35 27:33
#Gaussians 710,434 962,158 836,296 1,339,005 778,353 1,058,679
Storage (MB) 37.29 41.57 39.43 47.98 38.45 43.21
FPS 185.91 184.83 185.37 155.37 205.83 180.60

Ours+PP

PSNR 21.62 25.02 23.32 29.16 30.30 29.73
SSIM 0.792 0.870 0.831 0.899 0.900 0.900
LPIPS 0.240 0.163 0.202 0.257 0.259 0.258
Storage (MB) 19.07 22.64 20.86 28.43 19.21 23.82

Table 8. Per-scene results evaluated on NeRF-synthetic dataset.

Scene chair drums ficus hotdog lego materials mic ship Avg.

Ours

PSNR 34.91 26.18 35.44 37.38 35.48 29.97 35.81 31.51 33.33
SSIM 0.986 0.953 0.987 0.984 0.981 0.958 0.991 0.905 0.968
LPIPS 0.013 0.041 0.013 0.023 0.018 0.042 0.008 0.113 0.034
Train (m:ss) 9:19 8:55 6:41 8:20 8:23 6:53 7:12 8:46 8:04
#Gaussians 153,570 178,615 83,910 64,194 171,826 107,188 56,015 148,442 120,470
Storage (MB) 6.11 6.54 4.93 4.59 6.42 5.32 4.44 6.02 5.55
FPS 512.10 427.56 706.71 719.85 402.15 638.01 674.34 282.72 545.43

Ours+PP

PSNR 34.58 26.01 35.06 36.71 34.96 29.04 35.57 31.06 32.88
SSIM 0.985 0.951 0.987 0.983 0.979 0.954 0.991 0.903 0.968
LPIPS 0.013 0.042 0.013 0.023 0.020 0.043 0.008 0.115 0.034
Storage (MB) 3.09 3.56 2.11 1.75 3.45 2.51 1.59 3.28 2.67

	. Implementation Detail
	. Fast inference pipeline
	. Additional ablation study
	. Rate-distortion curve based on each proposal
	. Effectiveness of the proposed masking
	. Usage of I-NGP and R-VQ
	. R-VQ with initial training.

	. Inference memory
	. Per-Scene Results

