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A. Parametrizations
As described in Section 3.2, we empirically find that
parametrizing the U-Net model through estimating v-
prediction [16] performs favorably against predicting inputs
or outputs. We detail the formulation of predicting inputs
and outputs as follows. The U-Net model x̂θ predicting in-
puts is fine-tuned with the mean square loss:

L = E(x,y),t

[
∥x− x̂θ(yt, t)∥22

]
, (1)

and the reverse diffusion process is formulated as

yt−1 =
√
ᾱt−1

(
yt −

√
1− ᾱtx̂θ(yt, t)√

ᾱt

)
+
√
1− ᾱt−1x̂θ(yt, t) t = [T, · · · , 1],

(2)

The U-Net model ŷθ predicting outputs is optimized with
the loss function:

L = E(x,y),t

[
∥y − ŷθ(yt, t)∥22

]
, (3)

and the reverse diffusion process is

yt−1 =
√
ᾱt−1ŷθ(yt, t) +

√
1− ᾱt−1x

t = [T, · · · , 1],
(4)

B. Additional Experimental Results
B.1. Reliability of Off-the-Shelf Estimators

We indicate that the off-the-shelf estimators are not always
reliable, especially the approach for intrinsic image decom-
position. We demonstrate with the example of albedo esti-
mation in Figure 1 that the off-the-shelf approach generates
apparent artifacts in shadow areas, such as corners or floors
under beds. The approach fails to recover the correct albedo
but instead generates black patches. Consequently, SPADE
also learns this pattern, but our model tends to correct ar-
tifacts by performing accurate estimation, manifesting the
ability of generalization.

B.2. Real-World Evaluation

NYU Depth v2. Following Ke et al. [6], we evaluate our
method on NYU Depth v2 [18] according to the protocol of
affine-invariant depth evaluation [13]. We generate prompts
with BLIP-2 [7] to use the model trained on synthetic bed-
room images. We scale and shift the depth predictions to
align ground truths by solving least-square fitting. The com-
parison against other approaches is shown in Table 1. DMP
performs comparably with some previous methods trained
with large-scale data.

DMP

Off-the-shelf

SPADE

Figure 1. Qualitative comparisons on albedo estimation.
SPADE [9] and the off-the-shelf approaches generate artifacts in
dark areas.

Table 1. Comparison of performance on NYU Depth v2 [18].

# Training Samples NYU v2

Real Synthetic REL↓ δ ↑

MiDaS [13] 2M – 11.1 88.5
Omnidata [3] 11.9M 310K 7.4 94.5
DPT [12] 1.2M 188K 9.8 90.3
Painter [20] 24K – 8.0 95.0
Marigold [6] – 74K 5.5 96.4

DMP – 10K 12.0 86.5

ADE20K. We also investigate the performance of seman-
tic segmentation with more classes, e.g. 150 classes in
ADE20K [22]. We follow the encoding strategy proposed
by Wang et al. [20] and convert class indices into 3-digit
numbers with a b-base system, which can be represented
in the RGB space. However, the performance is unsatisfy-
ing (lower than 20% accuracy). With the number of classes
increasing, the differences between colors are less distin-
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Table 2. Comparison of performance between the subset of
ADE20K [22] and the synthesized bedrooms.

Bed Pillow Lamp Window Painting Mean

ADE20K Acc↑ 0.88 0.36 0.57 0.76 0.74 0.66
mIoU↑ 0.82 0.25 0.39 0.60 0.60 0.53

Bedrooms Acc↑ 0.89 0.59 0.64 0.83 0.75 0.75
mIoU↑ 0.85 0.36 0.44 0.73 0.67 0.61

Table 3. Analysis of training cross-attention layers and provid-
ing text condition. Both improve the performance of in-domain
samples but make little difference in out-of-domain data.

In-domain Out-of-domain

L1↓ Ang↓ L1↓ Ang↓

Self-attn 0.0606 0.1290 0.0890 0.1871
Self-attn + text 0.0605 0.1293 0.0876 0.1844

All attn + text 0.0514 0.1156 0.0872 0.1886

guishable. The unlabeled areas, which can be simply ig-
nored when calculating loss in the image space, become
hard to tackle in the latent space. We leave the application
of real-world many-class semantic segmentation for future
exploration.

We conduct another analysis with a subset of ADE20K
containing only images with beds. The train-test split is
constructed by applying the same filtering to the original
splits, resulting in 1825 training images and 189 test im-
ages. We also generate prompts with BLIP-2. The results
are presented in Table 2. The performance across real and
synthetic domains is similar, especially for large items.

B.3. Additional Ablation Study

Modeling. We vary the trainable layers and the presence
of text conditions when fine-tuning the model. Since the
example tasks we choose in this work are not directly con-
ditional on text, providing text descriptions might not be
necessary. Accordingly, training cross-attention layers is
optional. Table 3 shows that text condition and training
cross-attention layers help improve the performance of in-
domain samples, but the difference in out-of-domain sam-
ples is unnoticeable between the settings. This result sug-
gests that we can adopt curated real ground truth datasets
without text descriptions for training at the expense of a
subtle performance drop. Alternatively, we can generate
prompts with image captioning [7], which may lead to bet-
ter performance.

Size of Training Data. We analyze the effect of varying
the size of training data. We compare fine-tuning the model
for normal estimation with 100, 1K, 10K, and 100K gen-
erated bedroom images. As shown in Figure 2, increasing

100 1K 10K 100K
Training data size

0.1

0.2

0.3
L1
Angular

In-domain
Out-of-domain

Figure 2. Quantitative performance of normal estimation with dif-
ferent sizes of training data.

Table 4. NYU Depth v2 [18] performance comparison of models
trained with real and pseudo ground truths.

Dataset Ground Truth REL↓ δ ↑

Hypersim [14] Real 13.0 85.0

Bedrooms Pseudo 12.0 86.5

data size over 10K improves little performance, so we con-
duct the other experiments with 10K training images.

Quality of Training Data. We examine the influence of
data quality by comparing the models trained with real and
pseudo ground truth. We use Hypersim [14] as the real
ground truth and evaluate the models with NYU Depth
v2 [18]. Table 4 shows that there is no significant difference
between the two models. The model trained with pseudo
ground truth even performs slightly better. We speculate
that the data diversity may be an important factor. While
Hypersim contains more than 70K images, the images are
collected from only 461 scenes. Many of them are varia-
tions of camera views and distances. In contrast, the syn-
thetic images, while all of them are bedrooms, are all dis-
tinct scenes, which present diverse compositions of objects.

Blending Inputs and Outputs. IADB [4] proposes a de-
terministic framework where the diffusion process is for-
mulated as a series of interpolations between observations
and noise. Although their training strategy produces deter-
ministic mapping of observations and noise, the correlation
between observation and noise in each pair is stochastic due
to unpaired sampling during training. We analyze the appli-
cability of this framework to deterministic dense prediction
problems by sampling paired inputs and outputs and fine-
tuning from a pre-trained T2I diffusion model. With such
adaptation, the differences between their framework and our
approach are only the variance schedule and parametriza-
tion, where the importance weight of inputs linearly rises
through the diffusion process, and the U-Net predicts y−x.

Table 5 shows the comparison between DMP and IADB

2



Table 5. Comparions with IADB [4] and Poission blending [11]
on surface normal estimation.

In-domain Out-of-domain

L1↓ Ang↓ L1↓ Ang↓

IADB [4] 0.0675 0.1416 0.0974 0.2017
Poission [11] 0.0868 0.1888 0.1201 0.2623

DMP 0.0514 0.1156 0.0872 0.1886

Table 6. Comparions with IADB [4] on depth estimation.

In-domain Out-of-domain

REL↓ δ ↑ RMSE↓ REL↓ δ ↑ RMSE↓

IADB [4] 0.3099 0.4982 0.1165 0.5049 0.3132 0.1467

DMP 0.1072 0.8861 0.1020 0.2117 0.6395 0.1360

on surface normal estimation, and Table 6 is the result of
depth estimation. Figure 3 demonstrates that the images
generated by the model fine-tuned through IADB have noise
and inaccurate predictions.

In addition to α-blending used by DMP and IADB, we in-
vestigate the effect of an advanced blending strategy, Pois-
sion blending [11], which blends source and target images
by solving a least-square fitting while reserving the gradient
of source images. We assume image gradients are meaning-
ful in the latent space. The diffusion process is viewed as
increasing the intensity of the mask for selection editing.
We adopt an off-the-shelf PyTorch implementation [2]. The
performance on surface normal estimation is shown in Ta-
ble 5, and the example outputs in Figure 3 show that the
image quality is unsatisfying.

B.4. Additional Comparison

ControlNet. ControlNet [21] proposes a conditional text-
to-image framework with additional control, such as edges
or human poses, which constrains structures and layouts
of output images. Since it is also an image-to-image gen-
erative model, we train it to take input images as control
and output estimations. The performance of estimating 3D
properties and intrinsic images is presented in Table 7, and
the segmentation results are shown in Table 8. It demon-
strates weaker generalizability than our approach.

In addition, we analyze the influence of varying initial
noise in Figure 4. While the rough structures of the images
are controlled by the input images, the initial noise alters
the details of estimations. This variation is not tolerated for
dense prediction.

Palette. Besides training GAN-based generative models
from scratch and fine-tuning pre-trained diffusion models
with the approaches listed in Section 4.1, we addition-

DMP

IADB

Poisson

Figure 3. Qualitative comparisons between different blending
frameworks.

Noise 2

Noise 1

Figure 4. Results of ControlNet with different initial noise. The
outputs are not deterministic.

ally include training an image-to-image diffusion model
from scratch for comparison. Following the design of
Palette [15], we expand the input layers of the U-Net to en-
code the concatenation of input and output images, with the
U-Net parameterized to predict noise. The same autoen-
coder in the pre-trained diffusion model is also adopted.
The performance is shown in Table 7 and Table 8, which
indicates the inability of this approach to handle categorical
label maps.
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Table 7. Quantitative comparisons with ControlNet [21] and Palette [15] on 3D property estimation and intrinsic image decomposition.

Normal Depth Albedo Shading

In Out In Out In Out In Out

L1↓ Ang↓ L1↓ Ang↓ REL↓ δ ↑ RMSE↓ REL↓ δ ↑ RMSE↓ MSE↓ MSE↓ MSE↓ MSE↓

ControlNet [21] 0.1021 0.2216 0.1862 0.4032 0.1739 0.7681 0.1287 0.4398 0.4004 0.2253 0.0302 0.0402 0.0265 0.0336
Palette [15] 0.1643 0.3642 0.1881 0.4160 0.6889 0.2626 0.3604 1.0535 0.2270 0.4203 0.0203 0.0199 0.0304 0.0260

DMP 0.0514 0.1156 0.0872 0.1886 0.1072 0.8861 0.0041 0.2117 0.6395 0.1360 0.0051 0.0064 0.1020 0.0070

Table 8. Quantitative comparisons with ControlNet [21] and Palette [15] on semantic segmentation.

Bed Pillow Lamp Window Painting Mean

Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑ Acc↑ mIoU↑

ControlNet [21] 0.5215 0.4820 0.3540 0.1436 0.4275 0.2936 0.4999 0.4190 0.3823 0.3257 0.4370 0.3328
Palette [15] 0.0347 0.0329 0.0019 0.0018 0.0013 0.0012 0.0119 0.0119 0.0005 0.0005 0.0101 0.0097

DMP 0.8947 0.8506 0.5871 0.3645 0.6399 0.4414 0.8338 0.7335 0.7490 0.6735 0.7409 0.6127

0.7T

0.5T

0.9T

Figure 5. Qualitative comparisons of SDEdit with starting
from different time steps. A trade-off exists between the effect
of style transfer and content preservation.

B.5. Improving Compared Methods

Since the results of GAN-based generative models con-
sistently outperform diffusion-based models in our exper-
iments, we seek performance enhancement for diffusion-
based approaches. All experiments are conducted on in-
domain surface normal estimation.

Table 9. Quantitative comparisons on in-domain surface nor-
mal estimation between different timesteps where the genera-
tion process of SDEdit starts. The performance improves at the
expense of deviation from input image contents.

Step L1↓ Ang↓

0.5T 0.2897 0.5336
0.7T 0.2599 0.5087
0.9T 0.2059 0.4568

Table 10. Quantitative comparisons on in-domain surface nor-
mal estimation between DDIB and DDIB with Plug-and-Play
(PnP). The feature injection regulates the generated contents while
improving performance.

Variants L1↓ Ang↓

DDIB 0.1849 0.4210
DDIB + PnP 0.1652 0.3634

SDEdit. The time steps from which the generation pro-
cess of SDEdit starts can be seen as the strength of preserv-
ing the contents of input images. We show in Figure 5 that
generating from step 0.5T produces images with similar
contents to the input images, while from step 0.9T results in
plausible estimation of surface normals, but the image con-
tents are disrupted, despite achieving the best performance
in quantitative evaluation reported in Table 9. This issue
has long been understood as a trade-off between the effect
of style transfer and content preservation in image-to-image
literature [5, 8], but for deterministic dense prediction prob-
lems considered in this work, such a trade-off is not permit-
ted.
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DDIB+PnP

DDIB

Figure 6. Qualitative comparisons between DDIB and DDIB
with Plug-and-Play (PnP). The image contents are reserved but
not consistent with accurate normals.

Table 11. Quantitative comparisons on in-domain surface
normal estimation between different training tokens of IP2P
(learned). The increased number of tokens does not guarantee
improved performance.

#Tokens L1↓ Ang↓

1 0.3550 0.7181
2 0.3470 0.7790
4 0.3274 0.6384

DDIB. As presented in Appendix B.7, DDIB is capable
of generating images that are likely sampled from output
distributions, but the contents and geometry of output re-
sults are not consistent with input images. We explore the
approach to content consistency by adopting feature con-
straints proposed by Plug-and-Play (PnP) [19] for image-to-
image translation, which injects the self-attention and con-
volution features of input images into output images. As
shown in Figure 6 and Table 10, the structures and contents
of output images of DDIB with PnP constraints highly re-
semble the input images, but the estimated normals remain
inaccurate despite better quantitative performance.

IP2P. We analyze the expressiveness of inverted tokens
by varying the number of training tokens in IP2P (learned).
While the performance is slightly improved in one metric of
quantitative evaluation, shown in Table 11, Figure 7 reveals
that the differences between the estimated results are not
significant.

B.6. Failure Cases

We demonstrate some examples of failure cases in Figure 8
for surface normal estimation, Figure 9 for depth estima-

2 tokens

1 token

4 tokens

Figure 7. Qualitative comparisons of IP2P with different training
tokens.

DMP

Off-the-shelf

Figure 8. Failure cases of surface normal estimation.

tion, and Figure 10 for semantic segmentation, where off-
the-shelf approaches might provide more accurate predic-
tion than our method.

B.7. Results of Compared Methods

We show the example images generated by the compared
methods listed in Section 4.1. The results of surface normal
estimation are in Figure 11, with depths in Figure 12, albedo
in Figure 13, shading in Figure 14, and semantic segmenta-
tion in Figure 15.
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Table 12. Style templates, where {} is replaced by original prompts.

• anime artwork, {} . anime style, key visual, vibrant, studio anime, highly detailed
• concept art, {} . digital artwork, illustrative, painterly, matte painting, highly detailed
• comic, {} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed
• neonpunk style, {} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramod-

ern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra-detailed, intricate, professional
surrealist art, {} . dreamlike, mysterious, provocative, symbolic, intricate, detailed

• abstract style, {} . non-representational, colors and shapes, expression of feelings, imaginative, highly detailed
• art deco style, {} . geometric shapes, bold colors, luxurious, elegant, decorative, symmetrical, ornate, detailed
• vaporwave style, {} . retro aesthetic, cyberpunk, vibrant, neon colors, vintage 80s and 90s style, highly detailed

Off-the-shelf

DMP

Figure 9. Failure cases of depth estimation.

Off-the-shelf

DMP

Figure 10. Failure cases of semantic segmentation.

C. Implementation Details
Model Architecture and Optimization. We use Stable
Diffusion 1.4 as the pre-trained text-to-image model and
adapt it with rank = 4 for LoRA. We fine-tune the model for
50K steps with batch size 8 and learning rate 0.0001 with a
cosine decay schedule. The training takes around 14 hours
with a single NVIDIA RTX 3090.

Generating Images. We generate the training and test
images by first generating a set of prompts with a large lan-
guage model. The prompt for the language model is a tem-
plate adapted from pix2pix-zero [10], where different scene
keywords are filled in. The template is

“Provide a caption for a photo of a scene. The
caption should contain many adjectives, should
describe colors, styles, lighting and materials in
the photo, should be in English and should be no
longer than 150 characters. Caption:”.

The placeholder scene is replaced by “bedroom” for train-
ing images and in-domain test images. To generate out-of-
domain test images for estimating 3D properties and intrin-
sic images, it is replaced by uniform sampling from the key-
words in Table 13.

Out-of-domain test images for segmentation are synthe-
sized by varying the image styles of in-domain test images,
for semantic categories should remain the same across train-
ing and test images. The prompts regulating the styles are
listed in Table 12 borrowed from an online post [1].

D. Applications
Surface normals and depths facilitate many vision tasks.
We show by the examples of 3D photo inpainting [17] that
precise depths improve 3D reconstruction from 2D images.
Compared to the default depth estimator [13], the result-
ing videos produced with the depth maps generated by our
approach have more accurate depth relationships between
the objects. Please refer to the project website for visual
demonstrations.
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SPADE

DRIT++
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DDIB

IP2P (h)

IP2P (l)

VISII

DMP

Off-the-shelf

SPADE

DRIT++
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IP2P (l)

VISII

DMP

Off-the-shelf

(a) In-domain (b) Out-of-domain

Palette Palette

ControlNet ControlNet

Figure 11. Qualitative results of compared methods on surface normal estimation.
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Palette Palette

ControlNet ControlNet

DMP DMP

Figure 12. Qualitative results of compared methods on depth estimation.
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Figure 13. Qualitative results of compared methods on albedo estimation.
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Figure 14. Qualitative results of compared methods on shading estimation.
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SPADE
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Figure 15. Qualitative results of compared methods on semantic
segmentation.
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Table 13. Scenes categories of out-of-domain images.

airlock airplane cabin airport terminal airport ticket counter
alcove amusement arcade anechoic chamber indoor apse
aquarium arcade archive armory
indoor arrival gate art gallery art school art studio
artists loft assembly line indoor athletic field attic
auditorium auto factory indoor auto mechanics auto showroom
backstage indoor badminton court baggage claim ball pit
ballroom indoor bank bank vault banquet hall
indoor baptistry bar barbershop barrack
basement indoor basketball court bathhouse bathroom
indoor batting cage indoor bazaar beauty salon bedchamber
bedroom beer hall belfry bell foundry
berth berth deck betting shop bicycle racks
bindery biology laboratory indoor bistro indoor bleachers
indoor bomb shelter bookbindery bookstore indoor booth
indoor bow window bowling alley box seat boxing ring
breakroom indoor brewery indoor brickyard burial chamber
indoor bus depot bus interior indoor bus station butchers shop
indoor cabin cafeteria call center candy store
canteen backseat car interior frontseat car interior cardroom
cargo container interior indoor carport indoor casino catacomb
indoor cathedral catwalk chapel checkout counter
cheese factory chemistry lab indoor chicken coop indoor chicken farm
childs room interior choir loft indoor church indoor circus tent
classroom clean room indoor clock tower indoor cloister
closet clothing store cockpit coffee shop
computer room conference center conference hall conference room
confessional control room indoor control tower indoor convenience store
corridor courtroom interior covered bridge crawl space
cybercafe indoor dairy dance school darkroom
day care center delicatessen dentists office department store
departure lounge indoor diner dining car dining hall
dining room discotheque distillery indoor doorway
dorm room dress shop dressing room indoor driving range
drugstore editing room electrical room elevated catwalk
interior elevator elevator lobby elevator shaft engine room
entrance hall indoor escalator exhibition hall fabric store
indoor factory fastfood restaurant indoor ferryboat indoor firing range
fishmarket interior fitting room indoor flea market indoor florist shop
food court indoor foundry funeral chapel funeral home
furnace room galley game room indoor garage
indoor general store indoor geodesic dome gift shop great hall
indoor greenhouse indoor gun deck gun store indoor gymnasium
hallway indoor hangar hardware store hat shop
hatchery hatchway hayloft hearth
home office home theater hospital room indoor hot tub
hotel breakfast area hotel room indoor hunting lodge ice cream parlor
indoor ice skating rink indoor incinerator indoor inn indoor jacuzzi
indoor jail jail cell jewelry shop jury box
indoor kennel kindergarden classroom indoor kiosk kitchen
kitchenette lab classroom indoor labyrinth landing
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laundromat lavatory lecture room legislative chamber
indoor library indoor lido deck limousine interior indoor liquor store
living room lobby locker room loft
indoor lookout station indoor lumberyard machine shop indoor market
martial arts gym maternity ward mess hall mezzanine
military hospital mill mine indoor mini golf course
indoor monastery morgue indoor mosque indoor movie theater
indoor museum music store music studio natural history museum
newsroom indoor newsstand nightclub indoor nuclear power plant
nursery nursing home indoor observatory office
office cubicles indoor oil refinery operating room optician
orchestra pit interior organ loft orlop deck ossuary
indoor outhouse oyster bar packaging plant palace hall
pantry paper mill indoor parking garage parlor
particle accelerator indoor party tent pawnshop penalty box
perfume shop pet shop pharmacy physics laboratory
piano store pig farm indoor pilothouse pizzeria
indoor planetarium playroom indoor podium portrait studio
indoor power plant print shop promenade deck indoor pub
pulpit pump room indoor quonset hut reading room
reception recreation room indoor recycling plant refectory
repair shop restaurant restaurant kitchen indoor restroom
revolving door riding arena indoor roller skating rink rolling mill
sacristy sauna sawmill science museum
scriptorium security check point server room sewer
sewing room shipping room indoor shipyard shoe shop
indoor shopping mall shower shower room shrine
indoor skywalk sporting goods store squash court stable
indoor stage staircase indoor steam plant indoor steel mill
storage room storeroom food submarine interior subway interior
supermarket sushi bar indoor swimming pool indoor synagogue
tearoom teashop television room television studio
indoor tennis court indoor tent textile mill indoor procenium theater
indoor round theater indoor seats theater thriftshop throne room
ticket booth indoor ticket window indoor tobacco shop toyshop
indoor track trading floor train interior rail indoor tunnel
road indoor tunnel turkish bath utility room utility tunnel
van interior indoor velodrome ventilation shaft vestry
veterinarians office videostore indoor volleyball court voting booth
waiting room walk in freezer indoor warehouse indoor washhouse
indoor water treatment plant wet bar whispering gallery wig shop
window seat winery witness stand workroom
workshop indoor wrestling ring youth hostel basketball arena
football arena hockey arena performance arena rodeo arena
soccer arena home atrium public atrium bakery kitchen
bakery shop airplane cargo deck choir loft cloakroom booth
cloakroom library cubicle office cubicle home dinette
vehicle dinette elevator door freight elevator ferryboat cargo deck
fitting room organ loft establishment poolroom home poolroom
spa massage room spa mineral bath corridor in a subway station platform in a subway station
turnstiles in a subway station platform in a train station station in a train station barrel storage in a wine cellar
bottle storage in a wine cellar
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