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Supplementary Material

In this supplementary material, we provide the following
contents omitted from the main paper due to the space limit.
• Details of pseudo label generator architecture (Sec. A)

• More experimental details (Sec. B)

• Analysis on propagation (Sec. C)

• Impact of hyperparameters (Sec. D)

• Analysis on similarity extractor (Sec. E)

• Time and memory complexity of EXITS (Sec. F)

• More qualitative results (Sec. G)

• Limitation of the proposed method (Sec. H)

A. Details of Pseudo Label Generator Architec-
ture

The network of pseudo label generator consists of the ViT
encoder and the mask decoder. The architecture of ViT en-
coder follows the standard vision transformer design, which
consists of 12 transformer layers. We do not use a class token,
only the output features are fed into the mask decoder. The
ViT encoder produces the image features F ∈ RN×N×D

from the cropped input image.
The mask decoder architecture consists of two heads, a

pixel-wise head, and a prototype head, a design inspired by
YOLACT [1]. The pixel-wise head comprises four convo-
lutional layers, with bilinear interpolation used to upscale
the feature resolution between the second and third convolu-
tional layers. The feature map F goes through the pixel-wise
head and resulting Fpixel ∈ RH×W×D/3. The prototype head
consists of two fully connected layers with ReLU activation
function and D/3 hidden dimensions. We use average pool-
ing along spatial dimension of F , and it go through the
prototype head and resulting Fproto ∈ RD/3

We produce mask feature map by inner product between
Fpixel and Fproto, and the mask probability map M is given
by

M = σ(Fpixel Fproto) (a1)

where σ denotes sigmoid function.

B. More Experimental Details
The hyperparameter δ, which is a small margin to push
extreme points toward the center of the object, is set as
follows: 24 for COCO [11], 16 for LVIS v1.0 [6], and 12 for
PASCAL VOC [5]. Note that we push the extreme points
with these margin on the resized image space, which is 512×
512. The hyperparameters λmil, λpoint, λcrf , which balance

each loss term, are set as follows: 10, 0.5, 0.5 for COCO
and LVIS v1.0, and 10, 0.05, 0.5 for PASCAL VOC. Note
that MIL loss is applied only to samples where pseudo point
supervision within the bounding box could not be provided
using the point retrieval algorithm, i.e. |P̂FG ∪ P̂BG| = 0.
This accounts for only about 7% of the total images.

Index of layer AP AP50 AP75

all 39.5 66.7 40.4
#8 39.6 66.8 41.5

#10 40.4 67.4 41.4
#12 40.4 66.8 41.8

Table a1. Index of the transformer layer used for extracting sim-
ilarity matrix. all refers to the results obtained by averaging the
similarity matrices from all the transformer layers. The rows with
gray background represent the values used in our model.

α AP AP50 AP75

1 34.0 63.0 32.4
2 36.1 64.3 35.0
3 40.4 67.4 41.4
4 39.8 66.4 40.0
∞ 39.6 66.3 40.1

Table a2. Effect of α in propagation process. The rows with gray
background represent the values used in our model.

C. Analysis on Propagation
Similarity matrix. We extract the semantic similarity be-
tween points from the multi-head self-attention of the trans-
former in the similarity extractor. Table a1 shows the impact
of using different transformer layers for the extraction of the
similarity matrix. Since earlier layers easily miss high-level
semantics, averaging similarity matrices across all layers
does not yield the best results. Therefore, we empirically
choose to use 10th layer for extracting the similarity matrix.
Effect of number of hops (α). Table a2 shows the effect
of α in propagation process. when α = 1, equivalent to
generating pseudo point labels directly from the similarity
matrix, there is a substantial drop in performance. This indi-
cates that the propagation process is crucial for generating
accurate pseudo point labels. We also measured the perfor-
mance when the random walk propagation was continued
until convergence after an unlimited number of steps, which
is also known as the Absorbing Markov Chain [9, 14, 15]. It
is calculated by

T∞ = (1− β)(I− βT)−1 (a2)
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Figure a1. Average Precision (AP) of our second stage model varying hyperparameters. The model is evaluated on Pascal VOC using
SOLOv2 [13] and ResNet50 [7] backbone. (a) The foreground point threshold τFG. (b) The background point threshold τBG. (c) Loss
balancing term λpoint. (d) Loss balancing term λcrf. The blue diamond marker indicates the value selected for our final model.

where I denotes identity matrix and β ∈ [0, 1] denotes blend-
ing coefficient between propagated scores and initial scores.
In cases where the random walk process converged, we ob-
served the best performance at β = 0.25; however, it still did
not outperform the results obtained after three propagation
steps. Furthermore, considering the increased computational
cost needed to compute Eq. (a2), we set the optimal value of
α to 3.

D. Impact of Hyperparameters
Effect of τFG and τBG. In Fig. a1 (a) and (b), we demonstrate
the effect of two thresholds, τFG and τBG, respectively. In
the case of τFG, we observe that the hyperparameter value
we selected are not optimal and there is potential for further
performance improvement. This indicates that we did not
exhaustively tune these parameters using the validation set.
Effect of loss balancing terms. In Fig. a1 (c) and (d), we
show the instance segmentation results by using different
loss coefficients, λpoint and λcrf. Our model demonstrates
robustness to these hyperparameter changes, surpassing the
baseline [10] in every setting.

E. Analysis on Similarity Extractor
Effect of warm-up training epochs.1 As shown in Table
a3, more warm-up training leads to better performance by
improving background-foreground discrimination of the sim-
ilarity extractor.

w/o warm-up 4 epochs warm-up 8 epochs warm-up (Ours)

mask AP 36.0 37.0 37.3

Table a3. Effect of warm-up training for similarity extractor.

Impact of pretrained weights.1 In Table a4, we investigate
the impact of pretrained weights for the similarity extractor,
1For an experimental setup, we use the PASCAL VOC and SOLOv2 with
ResNet50 backbone as final model. Also we follow 1× schedule for the
training configuration of mmdetection.

as it can have a significant impact on label propagation. In
our experiments, using Masked Auto Encoder (MAE) [8]
pretrained weights shows the best result. We hypothesize that
the pixel-wise reconstruction training approach enhances the
similarity extractor’s ability to learn pixel-level relationships.

Pretrained weights AP AP50 AP75

MAE [8] 37.3 64.4 37.8
ImageNet 22k [4] 34.2 62.3 33.3

ImageNet 1k with DeiT [12] 35.8 62.4 35.9
DINO [2] 34.7 62.0 33.9

Table a4. Impact of pretrained weights for similarity extractor.

F. Time and Memory Complexity of EXITS
We compare the training time and number of parameters of
EXITS with those of MAL, which is our strong baseline
model. As shown in Table a5, EXITS shows a 20% increase
in training time over MAL due to the warm-up of the simi-
larity extractor and point retrieval process in Stage 1, with
an increase in the number of parameters by 86M due to
the similarity extractor module. Although EXITS requires
an additional step for warm-up, the consequent increase in
training time is only 5% of the total training time, and the
similarity extractor does not affect the space-time complexity
of inference.

8 NVIDIA A100 SXM4, COCO dataset, Mask2Former with Swin-Small

Stage 1 Stage 2

Method Warm-up Pseudo label Pseudo label Final model
SE generator training generation training

Training time MAL [10] - 23 hrs 1 hrs 10mins 71 hrs
EXITS (Ours) 2 hrs 26 hrs 1 hrs 10mins 71 hrs

# params MAL [10] - 93M - 69M
EXITS (Ours) 86M 93M - 69M

Table a5. Time and memory complexity comparison.
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Figure a2. Qualitative comparison of instance segmentation results, especially for separated objects due to occlusions. (a) inputs (b) EXITS
(ours), (c) model train with pseudo labels from MAL [10], (d) model train with ground-truth label. The red arrow points to the area where
occlusion occurs.
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Figure a3. Qualitative comparison of instance segmentation results in complex scenes. (a) inputs (b) EXITS (ours), (c) model train with
pseudo labels from MAL [10], (d) model train with the ground-truth label.



Figure a4. Failure cases of pseudo labels. Our pseudo label generator sometimes fails to predict when instances of the same class are
encompassed by the same bounding box. Red box indicates generated pseudo label from the first stage of EXITS and blue box indicates
ground-truth label.

G. More Qualitative Results
We visualize the final prediction results produced by
Mask2Former [3] trained with pseudo labels from the pseudo
label generator of EXITS using COCO test-dev set.
We also visualized the results of the state-of-the-art box-
supervised instance segmentation method, MAL [10], and
the upper-bound model trained with the ground-truth labels
as a comparison group. As can be seen in Fig. a2, the instance
segmentation model trained with our method is capable of
generating masks for separated objects, excluding the oc-
cluder. This demonstrates almost no difference compared to
the results trained with ground-truth labels, while the model
trained using pseudo labels generated by MAL struggles in
these cases. Additionally, as illustrated in Fig. a3, the model
trained with our pseudo labels thoroughly predicts even in
complex scenes with numerous instances, in contrast to mod-
els trained using pseudo labels generated by MAL, which
often fail in these scenarios.

H. Limitation
As observed in Fig. a4, our pseudo label generator often
mispredicts when multiple objects of the same class are
encompassed by the same bounding box. This issue arises
as our point retrieval algorithm assigns pseudo point labels
based on the results of the propagation difference between
points outside of the bounding box and extreme points. One
potential clue to solve this issue is to utilize the fact that even
objects within the same bounding box have different extreme
point annotations. However, this is beyond the scope of this
work and will be left for future research.
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