
FedSOL: Stabilized Orthogonal Learning with Proximal
Restrictions in Federated Learning

Supplementary Material

A. Table of Notations
Table 6. Table of Notations throughout the paper.

Indices:
k Index for clients (k ∈ [K])
g Index for global server

Environment:
D Whole dataset
Dk Local dataset of the k-th client
α Concentration parameter for the

Dirichlet distribution
s The number of shards per user

FL algorithms:
β, µ Multiplicative coefficient for the

proximal loss
γ Learning rate
τ Temperature to be divided in the

softmax probability distribution
ρ Perturbation Strength for SAM-

related algorithms
Λ Vector consists with scaling pa-

rameters for perturbation vector in
SAM-related algorithms

Weights:
wg Weight of the global server model
wk Weight of the k-th client model
∥wg −wk∥ Collection of L2-norm between

server and client models, among all
rounds.

Objective Functions:
Lk
local Local objective for the k-th client
Lk
p Proximal objective for the k-th

client

B. Experimental Setups
The code is implemented by PyTorch [54]. The overall code
structure is based on FedML [21] library with some modi-
fications for simplicity. We use 2 A6000 GPU cards, but
without Multi-GPU training.

B.1. Model Architecture

In our primary experiments, we use the model architec-
ture used in FedAvg [46], which consists of two convolu-

tional layers with subsequent max-pooling layers, and two
fully-connected layers. The same model architecture is also
used in [33, 36, 43]. We also conduct further experiments
on ResNet-18 [22], Vgg-11 [58], and SL-ViT [34]. For SL-
ViT, we resize 28×28-sized images into 32×32 to accom-
modate the required minimum size for the patch embedding.

B.2. Datasets
To validate our approach, we employ 6 distinct datasets, as
listed below. The values in the parentheses denote the num-
ber of samples used to train and test, respectively.
• MNIST [15] (60,000 / 10,000): contains hand-written

digits images, ranging from 0 to 9. The data is augmented
using Random Cropping, Random Horizontal Flipping,
and Normalization. The data is converted to 3-channel
RGB images.

• CIFAR-10 [32] (50,000 / 10,000): contains a labeled sub-
set of 80 Million Tiny Images [62] for 10 different classes.
The data is augmented using Random Cropping, Horizon-
tal Flipping, Normalization, and Cutout [16].

• SVHN [51] (73,257 / 26,032): contains digits of house
numbers obtained from Google Street View. The data is
augmented using Random Cropping, Random Horizontal
Flipping, and Normalization.

• CINIC-10 [12] (90,000 / 90,000): is a combination of
CIFAR and downsized ImageNet [14], which is compiled
to serve as a bridge between the two datasets. The data is
augmented using Random Cropping, Random Horizontal
Flipping, and Normalization.

• PathMNIST [71] (110,000 / 7,180): contains non-
overlapping patches from Hematoxylin & Eosin stained
colorectal histology slide images. The data is augmented
using Random Horizontal Flipping, and Normalization.

• TissueMNIST [71] (189,106 / 47,280): contains micro-
scope images of human kidney cortex cells, which are
segmented from 3 reference tissue specimens. The data is
augmented using Random Horizontal Flipping, and Nor-
malization. The data is converted to RGB images.

Note that we evaluate our algorithm is on medical imaging
datasets - a crucial practical application of federated learn-
ing [3, 72]. Illustrative examples of the images are illus-
trated in Figure 9.

B.3. Non-IID Partition Strategy

To comprehensively address the data heterogeneity issue in
federated learning, we distribute the local datasets using the
following two distinct data partition strategies: (i) Sharding

Figure 9. Example images from PathMNIST datasets and Tis-
sueMNIST datasets.

and (ii) Latent Dirichlet Allocation (LDA).

• (i) Sharding [33, 46, 52]: sorts the data by label and di-
vide the data into shards of the same size, and distribute
them to the clients. In this strategy, the heterogeneity
level increases as the shard per user, s, becomes smaller,
and vice versa. As the number of shards is the same
across all the clients, the dataset size is identical for each
client.

• (ii) Latent Dirichlet Allocation (LDA) [36, 43, 63]: al-
locates the data samples of class c to each client k with the
probability pc, where pc ≈ Dir(α). In this strategy, both
the distribution and dataset size differ for each client. The
heterogeneity level increases as the concentration param-
eter, α, becomes smaller, and vice versa.

Note that although only the statistical distributions varies
across the clients in Sharding strategy, both the distribution
and dataset size differ in LDA strategy.

B.4. Learning Setups

We use a momentum SGD optimizer with an initial learn-
ing rate of 0.01, a momentum value of 0.9, and weight de-
cay 1e-5. The momentum is employed only for local learn-
ing and is not uploaded to the server. Note that SAM op-
timization also requires its base optimizer, which performs
the parameter update using the obtained gradient at the per-
turbed weights. The learning rate is decays with a factor
of 0.99. As we are assuming a synchronized FL scenario,
we simulate the parallel distributed learning by sequentially
conducting local learning for the sampled clients and then
aggregate them into a global model. The standard deviation
is measured over 3 runs. The detailed learning setups for
each datasets is provided in Table 7.

B.5. Algorithm Implementation Details

We search for hyperparameters and select the best among
the candidates. The hyperparameters for each method is
provided in Table 8. In the primary experiments, we use
KL-divergence loss [23] with softened logits with temper-
ature τ=3 for the proximal loss for the adversarial weight
perturbation in FedSOL.

Table 7. Learning scenarios for each datasets.

Datasets Clients Comm. Rounds Sampling Ratio

MNIST 100 200 0.1
CIFAR-10 100 300 0.1

SVHN 100 200 0.1
CINIC-10 200 300 0.05

PathMNIST 200 200 0.05
TissueMNIST 200 200 0.05

Table 8. Algorithm-specific hyperparameters.

Methods Selected Searched Candidates

FedAvg None None

FedProx µ=1.0 µ ∈ {0.1, 0.5, 1.0, 2.0}

Scaffold None None

FedNova None None

FedNTD β=1.0, τ=1.0 β ∈ {0.5, 1.0}, τ ∈ {1.0, 3.0}

FedSAM ρ=0.1 ρ ∈ {0.1, 0.5, 1.0, 2.0}

FedASAM ρ=1.0 ρ ∈ {0.1, 0.5, 1.0, 2.0}

FedDyn None None

MOON µ=0.1, τ=0.5 µ ∈ {0.1, 0.5}, τ ∈ {0.5, 1.0}

FedSoL ρ = 2.0 ρ ∈ {0.1, 0.5, 1.0, 2.0}

C. Learning Curves
To provide further insights into the learning process, we
illustrate the learning curves of different FL methods in
Figure 10. Although we utilize different communication
rounds for each dataset, the performance of the model be-
comes sufficiently saturated at the end of communication
rounds. For all datasets, FedSoL not only achieves a supe-
rior final model at the end of the communication round but
also demonstrates much faster convergence. Moreover, al-
though some algorithms that perform well on a dataset fail
on another (ex. FedNTD [33] underperforms compared to
FedProx [38] on the TissueMNIST datasets), FedSOL con-
sistently exhibits significant improvements when compared
to the other baselines.

D. Personalized Performance
In Table 9, we compare FedSOL with several methods
specifically designed for personalized federated learning
(pFL): PerFedAvg [18], FedBabu [52], and kNN-Per [44].
Each method is assessed by fine-tuning them for e local

Figure 10. Learning curves of FL methods on LDA (α=0.1). The curves are smoothed for clear visualization.

epochs from the global model after the final communication
round. As global alignment is unnecessary for the personal-
ized model, we fine-tune FedSOL using the local objective
without perturbation and denote it as FedSOL-FT. The stan-
dard deviation is measured across the clients. The results
reveal that our FedSOL-FT consistently outperforms other
pFL methods under various scenarios. Furthermore, the gap
is enlarged when local (e=1), implying that the global model
obtained by FedSOL adapts more quickly to local distribu-
tions. We suggest that by integrating FedSOL with other
methods specialized for pFL, we can attain superior per-
formance for both the global server model and client local
models.

Table 9. Personalized FL performance after τ epochs of fine-
tuning. The heterogeneity level is set as LDA (α = 0.1).

Method e CIFAR-10 SVHN TissueMNIST

Local-only - 84.7 ±12.8 87.4 ±13.0 82.4 ±15.5

FedAvg
1 84.1 ±13.4 86.6 ±15.5 82.2 ±17.5

5 88.9 ±8.9 92.1 ±5.7 89.2 ±10.1

PerFedAvg
1 80.5 ±16.2 64.1 ±30.3 82.3 ±18.9

5 86.3 ±10.4 72.4 ±21.2 88.8 ±10.2

FedBabu
1 84.6 ±12.7 88.7 ±9.6 85.7 ±14.3

5 89.2 ±8.4 92.7 ±6.2 90.5 ±8.8

kNN-Per
1 85.7 ±12.3 86.4 ±15.0 86.5 ±14.2

5 89.7 ±8.1 92.8 ±6.2 91.4 ±7.5

FedSoL-FT (Ours)
1 87.5 ±9.7 92.5 ±7.4 88.1 ±12.2

5 90.5 ±7.8 95.0 ±3.9 91.6 ±6.9

E. Performance on Larger Datasets

In Table 2, we show that FedSOL consistently achieves per-
formance gains, while most existing FL (Federated Learn-
ing) methods are sensitive to learning setups. Although
FedNTD marginally outperforms FedSOL in some CIFAR-
10 cases, it significantly falls behind in most others. In Ta-
ble 10, we conducted experiments on the CIFAR-100 and

ImageNet-100 datasets. We used the ResNet-18 model, dis-
tributing each dataset across 100 clients with a sampling
ratio of 0.1 and optimized for 5 local epochs. Our obser-
vations indicate that FedSOL maintains its effectiveness in
both datasets, whereas FedNTD’s performance decreases in
CIFAR-100.

Table 10. Test Accurac on CIFAR-100 and ImageNet-100.

Method CIFAR-100 ImageNet-100
s = 5 s = 10 α= 0.05 α= 0.1

FedAvg 42.43 53.23 48.69 43.41
FedProx 39.03 ↓ 48.38 ↓ 46.75 ↓ 34.49 ↓
FedNTD 39.32 ↓ 52.23 ↓ 48.35 ↓ 44.08 ↑
FedSOL 44.21 ↑ 53.78 ↑ 49.25 ↑ 44.97 ↑

F. Head Perturbation in Larger Models
To validate the effectiveness of partial perturbation strategy,
we extended the comparison experiment in Table 5 to Ta-
ble 11. The results on VggNet-11 and ResNet-18 indicate
that perturbing only the last classifier layer (head) is almost
as effective as perturbing the entire model (full), saving sig-
nificant computational cost.

Table 11. Effect of partial perturbation on CIFAR-10 (α=0.1).

Model FedAvg FedSOL (full) FedSOL (head)
VggNet-11 41.30 56.44 (+ 15.14) 56.39 (+ 15.09)
ResNet-18 49.92 66.69 (+ 16.77) 66.32 (+ 16.04)

G. Comparison to the Sharpness-Aware Opti-
mization

G.1. SAM Optimization in FL

Recent studies have begun to suggest that enhancing lo-
cal learning generality can significantly boost FL perfor-
mance [6, 47, 55], aiding the global model in generalizing
more effectively. Inspired by the latest findings that connect
loss geometry to the generalization gap [8, 24, 26, 29], those

Figure 11. An overview of FL scenarios. Gray-shaded areas represent global knowledge, while Green-shaded areas represent local
knowledge. (a) Learning with the proximal objective achieves global knowledge preservation but limits local knowledge acquisition. (b)
Learning with the local objective effectively acquires local knowledge but results in forgetting global knowledge. In (c), the orthogonal
learning strategy of FedSOL stabilizes the learning process by resolving conflicts between these two objectives.

works seek for flat minima, utilizing the recently proposed
Sharpness-Aware Minimization (SAM) [20] as the local op-
timizer. For instance, FedSAM [55] and FedASAM [6]
demonstrate the benefits of using SAM and its variants as
local optimizer. Meanwhile, FedSMOO [60] incorporates
a global-level SAM optimizer, and FedSpeed,[61] employs
multiple gradient calculations to encourage global consis-
tency. By improving local generality, these approaches mit-
igate the conflicts between individual local objectives, con-
tributing to the overall smoothness of the aggregated global
model [6, 55, 60].

G.2. Limitations of using SAM in FL

Although these approaches have demonstrated competitive
performance without proximal restrictions, their ability to
generalize effectively within their respective local distribu-
tions does not necessarily guarantee the preservation of pre-
vious global knowledge during local learning. This is due to
the inherent conflict between global and local objectives. In
our FedSOL, we introduce the use of proximal perturbation
as a means to achieve an orthogonal local gradient, which
does not contribute to an increase in proximal loss. This
approach can be understood as implicitly incorporating the
effect of proximal restriction into SAM, achieved by adjust-
ing the perturbation’s direction and magnitude during local
learning. It is also worth mentioning that the effect of prox-
imal perturbation depends on the relationship between the
local and proximal objectives. In the extreme case where
the local objective is identical to the proximal objective, our
FedSOL collapses into the original SAM.

In Figure 11, we illustrate a conceptual overview of the
global and local knowledge trade-off in FL. In Figure 11(a)
and Figure 11(b), learning on one objective undermines the
effect of the other. However, the orthogonal learning of Fed-

SOL stabilizes the local learning by tackling the conflicts
between the two objectives (Figure 11(c)).

H. Other Perturbation Strategies
In our work, we propose the use of proximal perturbation
as our primary strategy. This section compares various per-
turbation strategies and discusses the effectiveness of using
the proximal gradient for weight perturbation. A straight-
forward approach would involve using a linear combination
of the local objective, which includes both the local loss
Lk
local and the proximal loss Lk

p in Equation 2. This combi-
nation is applied in SAM-like optimization (Equation 4) as
follows:

min
wk

max
∥ϵ∥2<ρ

[
Lk
local(wk) + β · Lk

p(wk;wg)
]
. (13)

In the above equation, the gradients for weight perturbation
and parameter update are obtained from the same objective.

However, this approach encounters the same drawbacks
as when using each method on its own. The combined loss
also varies considerably across clients due to heterogeneous
local distributions, causing the smoothness to largely rely
on individual local distributions. Furthermore, the nega-
tive correlation between the gradients of the two objectives
within the combined loss still limits local learning. Conse-
quently, this approach neither preserves global knowledge
from proximal objective nor effectively acquires the local
knowledge as desired.

Instead in FedSOL, we overcome this issue by decou-
pling this directly combined loss into the proximal loss Lk

p

for weight perturbation and the local loss Lk
local for weight

updates. To further analyze the relationship between loss
functions and weight perturbation in FedSOL optimization,
we conduct an ablation study on the following strategies.

Figure 12. Performance on CIFAR-10 (α=0.1) datasets.

• A0: Use local loss without any weight perturbation (Fe-
dAvg).

• A1: Use local loss, but get the local loss gradient at
weights perturbed by the proximal gradient (FedSOL).

• A2: Use combined loss, but get the proximal loss gradient
at weights perturbed by the proximal gradient.

• A3: Use combined loss, but get the proximal loss gradient
at weights perturbed by the proximal gradient.

• A4: Use combined loss, but get the combined loss gradi-
ent at weights perturbed by the combined gradient.

• A5: Use combined loss without any weight perturbation
(Proximal Restriction).

• A6: Use combined loss, but get the local loss gradient at
proximally perturbed weight loss.

We exclude the strategies that obtaining proximal loss at
the perturbed weights using the local loss gradient i.e.,
Lp(wk+ϵ∗c), where ϵ∗c = ρ

gp+gl

∥gp+gl∥
, as it leads the learning

to diverge. The detailed formulation for each method is pro-
vided in Table 12 with its corresponding performance. The
results in Table 12 demonstrates that utilizing the local loss
gradient at weights perturbed by the proximal loss gradient
(A1 in Table 12) yields outperforms the other approaches.
We suggest that our FedSOL is an effective way to integrate
proximal restriction effect into SAM optimization in FL.

I. Client-side Computational Cost
In Table 5, we analyze the FLOPS required for FedSOL
and note that perturbing only the head part is almost as ef-
fective as full perturbation, yet it requires only 33% more
computation than FedAvg. Although FedSOL necessitates
backward computation twice, this does not lead to increased
GPU memory usage, as FedSOL does not store these gradi-
ents simultaneously. The slight increase in memory usage
(< 0.01%) arises from calculating the adaptive perturbation
strength for each layer. In Table 13, we present the latency
for a single local step with the ImageNet-100 dataset, us-
ing a ResNet-18 model on an NVIDIA A6000 GPU. We
measured FedSOL’s latency using an L2 proximal loss for

Table 12. Detailed formulation for each method and their perfor-
mance on CIFAR-10 datasets (LDA α=0.1).

Name Method Formulation Performance

A0 Llocal(wk) 56.13

A1 Llocal(wk + ϵ∗p) 64.13
A2 Llocal(wk) + β · Lp(wk + ϵ∗p) 53.85

A3 Llocal(wk + ϵ∗p) + β · Lp(wk + ϵ∗p) 60.28

A4 Llocal(wk + ϵ∗c) + β · Lp(wk + ϵ∗c) 45.72

A5 Llocal(wk) + Lp(wk) 61.76

A6 Llocal(wk + ϵ∗p) + β · Lp(wk) 44.12

a fair comparison. While FedSOL involves additional lo-
cal computation, we emphasize that in FL, the energy con-
sumed for communication typically surpasses that for com-
putation. The faster convergence of FedSOL substantially
reduces the total energy consumption. In the ImageNet-
100 experiment detailed in Table 10, for example, FedSOL
achieves FedAvg’s 300-round performance by round 238.

Table 13. Measured latency for a single local step.

Usage FedAvg FedProx FedNTD FedSAM FedSOL

Latency 2.846 s 2.865 s 2.996 s 3.380 s 2.900 s

J. Effect of Learning Factors on FedSAM
Figure 12 presents the impact of learning factors on Fed-
SAM [55] and FedASAM [6], showing that both methods
are more sensitive to these factors compared to FedSOL. In
most of our experiments, SAM-related FL methods shows
inferior performance compared to FedAvg. This may be be-
cause SAM, aiming to enhance local model generality, be-
comes less effective for small models, under conditions of
high data heterogeneity, or with a low sampling ratio. Fu-
ture research is expected to identify the conditions where
employing SAM on the local side becomes beneficial.

K. Proof of Proposition
The notion of ≈ in the main papers for (Especially for Equation 10 and Equation 9) are supported by Taylor’s theorem. We
will use the following formulation for C2 functions. All matrix norms are the largest singular value.

Theorem 1 (Taylor’s theorem) If f is C2 function at the open ball contains w and w + v, we have:

f(w + v) = f(w) + ⟨∇f(w), v⟩+Rf (v;w) , where |Rf (v ;w)| ≤ 1

2
∥v∥2 max

t∈[0,1]
∥∇2f(w + tv)∥2 .

For R(v ;w), there are two well-known representations:

• There exists t ∈ (0, 1) such that Rf (v ;w) =
1

2
v⊤∇2f(w + tv)v,

• Rf (v ;w) =

∫ 1

0

(1− t)v⊤∇2f(w + tv)v dt.

Now, We first precise the notion of ≈ in the Equation 10:

∆FedSOLLk(wk) = Lk
(
wk − γ gFedSOL

u (wk)
)
− Lk(wk)

= −γ⟨∇wk
Lk(wk), g

FedSOL
u (wk)⟩+RLk(−γ gFedSOL

u (wk) ;wk) , (14)

and Equation 9:

gFedSOL
u (wk) = ∇wk

Lk
local(wk + ϵ∗p)

= gl(wk) + ρ∇2
wk
Lk
local(wk)ĝp(wk) +R∇wk

Lk
local

(ρĝp(wk) ;wk) , (15)

where R∇Lk
local

(ρĝp(wk) ;wk) is a vector, where the i-th value is R∂iLk
local

(ρĝp(wk) ;wk), which is the residual term with
i-th directional derivative ∂iLk

local.

By substituting the above expression for gFedSOL
u (wk) into ∆FedSOLLk(wk), we have:

∆FedSOLLk
{local,p}(wk) = −γ⟨∇wk

Lk
{local,p}(wk), gu(wk)⟩+RLk

{local,p}
(−γ gFedSOL

u (wk) ;wk) ,

= −γ
(
⟨∇wk

Lk
{local,p}(wk), gl⟩+ ρ ⟨∇wk

Lk
{local,p}(wk),∇2Lk

local ĝp⟩
)
+

−γ⟨∇wk
Lk
{local,p}(wk),R∇Lk

local
(ρĝp(wk) ;wk)⟩+RLk

{local,p}
(−γ gFedSOL

u (wk) ;wk)︸ ︷︷ ︸
Ek
{local,p}

,

where Ek{local,p} is the total residual term:

Ek{local,p} = −γ
∑
i

∂iLk
{local,p}(wk)R∂iLk

local
(ρĝp(wk) ;wk) +RLk

{local,p}
(−γ gFedSOL

u (wk) ;wk) .

For representing the magnitude of residual term effectively, we will assume three constants. It is important to note that the
constants can be made smaller by concentrating on the optimization-relevant region rather than the entire weight space.

Assumption 1 Matrix norm of Hessian and the norm of gradient for Lk
local are bounded:

Dk = sup
w
∥∇2Lk

local(w)∥ <∞ , Bk = sup
wk

∥∇wk
Lk
local(wk)∥ <∞ .

Assumption 2 For any linear path connecting w and v with length ρ, we define the following coefficient:

Ck
ρ,{local,p} = sup

w,v,∥w−v∥=ρ

max
t∈[0,1]

∥∥∥∥∥∑
i

∂iLk
{local,p}(w)∇2∂iLk

local(w + t(v −w))

∥∥∥∥∥ <∞ .

The first term becomes:

−γρ2
∫ 1

0

(1− t)ĝp(wk)
⊤

(∑
i

∂iLk
{local,p}(wk)∇2∂iLk

local(w + tρĝp(wk))

)
ĝp(wk) dt ,

and we can easily see that magnitude of this term can be bounded with 1
2γρ

2Ck
ρ,{local,p}, by Theorem 1. By same procedure,

it is easy to see the second term is bounded by 1
2γ

2Dk(Bk)2. Consequently, we can conclude:

∆FedSOLLk
{local,p}(wk) = γ

(〈
∇wk

Lk
{local,p}(wk), gl

〉
+ ρ

〈
∇wk

Lk
{local,p}(wk),∇2Lk

local ĝp

〉)
+ E{local,p} , (16)

where E{local,p} has magnitude:

Ek{local,p} = O
(
γρ2Ck

ρ,{local,p} + γ2Dk(Bk)2
)
.

Remark. In this analysis section, to align with the adaptive perturbation scheme utilized in real experiments, we cautiously
suggest considering the constant strength as ρ = 2.0/

√
params in terms of order. In the FedSOL algorithm, adaptive

perturbation strength is employed, as detailed in Section 3.3. Here, from Equation 7, the squared sum of perturbation strength
is ρ2, substantially lower than in scenarios assuming a constant strength ρ (where the squared sum would be ρ2×(# params)).
For simplicity, our analysis primarily focuses on scenarios with constant perturbation strength. Consequently, within this
analysis, the effective perturbation strength should be considerably lower than the experimental setting of ρ = 2.0 in FedSOL.
That is, it should be treated as the order of 2.0/

√
params to match the parameter-wise squared sum of perturbation strengths.

K.1. Proof of Proposition 1

Regarding Proposition 1, from Equation 16, we obtain:

∆FedSOLLk
p = −γ

(
⟨gp, gl⟩+ ρ ⟨gp,∇2Lk

local ĝp⟩
)
+ Ekp

= −γ
(
⟨gl , gp⟩+ ρ · ĝp

⊤∇2Lk
local gp

)
+O

(
γρ2Ck

ρ,p + γ2Dk(Bk)2
)
.

Furthermore, if the∇2Lk
local(wk) is positive semi-definite, gp

⊤ ∇2Lk
local gp ≥ 0, and we can guarantee that the second term

is nonnegative as well.

K.2. Proof of Proposition 2

Similarly, from Equation 16, we derive:

∆FedSOLLk
local(wk) = −γ

(
⟨∇wk

Lk
local(wk),∇wk

Lk
local(wk)⟩+ ρ ⟨∇wk

Lk
local(wk),∇2

wk
Lk
local ĝp⟩

)
+ Eklocal

= −γ
(
∥∇wk

Lk
local(wk)∥2 +

ρ

2
⟨ĝp, 2∇2

wk
Lk
local∇wk

Lk
local(wk)⟩

)
+O

(
γρ2Ck

ρ,local + γ2Dk(Bk)2
)

= −γ
(
∥∇wk

Lk
local(wk)∥2 +∇wk

∥∇wk
Lk
local(wk)∥2 ·

ρ

2
ĝp

)
+O

(
γρ2Ck

ρ,local + γ2Dk(Bk)2
)

For the FedAvg update of Lk
local(wk), as derived in Equation 14, we have:

∆FedAvgLk
local(wk) = −γ⟨∇wk

Lk(wk), gl⟩+RLk
local

(−γ gl(wk) ;wk)

= −γ∥∇Lk
local(wk)∥2 +O

(
γ2Dk(Bk)2

)
. (17)

On the other hand, from Equation 17, applying the first-order Taylor approximation to wk 7→ ∥∇Lk
local(wk)∥2, we have:

∆FedAvgLk
local

(
wk +

ρ

2
ĝp

)
= −γ

∥∥∥∇wk
Lk
local

(
wk +

ρ

2
ĝp

)∥∥∥2 +O(γ2Dk(Bk)2
)

= γ
(
∥∇wk

Lk
local(wk)∥2 +∇wk

∥∥∇wk
Lk
local(wk)

∥∥2 · ρ
2
ĝp

)
+O

(
γρ2Ck

0,local + γρ2(Dk)2 + γ2Dk(Bk)2
)
.

Therefore, ∆FedAvgLk
local (wk + ρ

2 ĝp) is equivalent with ∆FedSOLLk
local(wk), up to order:

O
(
γρ2Ck

ρ,local + γρ2Ck
0,local + γρ2(Dk)2 + γ2Dk(Bk)2

)
.

L. Toy Example for Explaining FedSOL
Consider a two-dimensional weight space, R2, and denote the weights as (u, v) ∈ R2. We define the local loss function
Llocal and the proximal loss function Lp. The local minimum is represented as (ul, vl), and the aggregated server weight is
denoted as (0, 0). The most intuitive form of losses that can be considered is:

Llocal(u, v) =
1

2
(u− ul)

2 +
δ

2
(v − vl)

2 and Lp(u, v) =
µ

2
(u2 + v2) ,

where δ is a positive coefficient. A value of δ indicates that the local objective is more influenced by the variable u than
by the direction v if δ < 1 and vice versa. δ can be also interpreted as the proportion of one class over another in binary
classification.
Since ϵ∗p = (u,v)√

u2+v2
, the FedSOL gradient on local side becomes:

gFedSOL =

(
(u− ul) + ρ

u√
u2 + v2

, δ ·
(
(v − vl) + ρ

v√
u2 + v2

))
,

while with the adding proximal loss term (like FedProx), we have an overall local gradient:

gFedProx = ((u− ul) + µ · u, δ · (v − vl) + µ · v) .

When considering proximal loss, proximal regularization is applied in the u and v directions without considering local loss,
which can be sub-optimal. The sub-optimality can be summarized in the sense of global alignment and local learnablity and
this can be resolved with FedSOL, which uses local gradient update in the proximal-loss-sensitive point, while not harming
local learnability as Equation 2. This argument strengthen the discussion for effectiveness of reducing negative inner product
in Equation 1.
The equilibrium point in both algorithms is defined where the gradient equals zero, and in the current setting, it is unique.
We investigate each algorithm on this setting as follows:

Proximal Regularization (FedProx)

Analysis: In FedProx, the learned weight (u∗, v∗) is calculated as
(

1
1+µul,

δ
δ+µvl

)
. This reflects the influence of both the

strength of normalization and the local curvature. Furthermore, the resulting vector from (0, 0) to (u∗, v∗) is biased towards
the direction with greater curvature compared to (ul, vl).
Implication: While this directional bias may not pose significant issues in local learning, it becomes problematic in FL where
weights from different clients are averaged. Since each client may have a different δ, the result of normalization influenced
by local client loss might not be optimal in an FL context.

FedSOL

Analysis: FedSOL introduces a normalization that maintains the same direction but reduces the vector magnitude as ρ.

Proof: Let us consider the polar coordinate of (u∗, v∗) and (ul, vl) as (r∗, θ∗) and (rl, θl) respectively. Furthermore,
(u∗, v∗) satisfies:

(u∗ − ul, v
∗ − vl) =

(
−ρ u∗√

(u∗)2 + (v∗)2
,−ρ v∗√

(u∗)2 + (v∗)2

)
.

Then θ∗ = θl = θ is ensured by vl
ul

= v∗

u∗ . Now, the above equation gives r∗ = rl − ρ. □
Benefit: This implies that aggregation can occur appropriately in FedSOL. Even with diverse clients, the gradient without
normalization is simply scaled, thus preserving the effectiveness of aggregation.

Conclusion

The approach of FedSOL in handling proximal loss demonstrates significant advantages over FedProx within the Federated
Learning context. By aligning weight adjustments parallel to the local optimum, FedSOL ensures more efficient and effective
aggregation among diverse clients. In contrast, FedProx exhibits a bias towards greater curvature and, as a result, potentially
leads to sub-optimal global alignment, as seen with the variable impacts of δ on different clients. The simulation in Figure 13

Figure 13. Gradient update paths for FedSOL and FedProx in a toy example on δ = 0.1, over 4000 epochs with learning rate 0.01, and
initial weights (ul, vl) = (1, 1). The illustration highlights the distinct trajectories and convergence points of each algorithm, underlining
their differing approaches.

corroborates our analysis, showing that the optimized points for FedSOL align with the lime line connecting the initial
and optimal points. Meanwhile, FedProx’s optimized points are skewed towards the u-axis, highlighting the theoretical
distinctions between the two algorithms.

	. Table of Notations
	. Experimental Setups
	. Model Architecture
	. Datasets
	. Non-IID Partition Strategy
	. Learning Setups
	. Algorithm Implementation Details

	. Learning Curves
	. Personalized Performance
	. Performance on Larger Datasets
	. Head Perturbation in Larger Models
	. Comparison to the Sharpness-Aware Optimization
	. SAM Optimization in FL
	. Limitations of using SAM in FL

	. Other Perturbation Strategies
	. Client-side Computational Cost
	. Effect of Learning Factors on FedSAM
	. Proof of Proposition
	. Proof of Proposition 1
	. Proof of Proposition 2

	. Toy Example for Explaining FedSOL

