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A. Implementation Details

A.1. Baseline Implementation Details

HumanNeRF [17] does not support the simultaneous op-
timization of multiple people, so we optimize each person
separately and merge them in the evaluation stage. Following
the default HumanNeRF experiment settings, each person
is optimized for 400k iterations using 4 NVIDIA RTX4090
GPUs which takes approximately 40 hours per person. For
the ZJU-Mocap [11] dataset, we utilize the publicly available
checkpoints shared by the authors.
Shuai et al. [15] represents the scene as a composition of a
background model and human model, both represented by
a variant of NeRF [10, 11]. For the Panoptic dataset [5] and
Hi4D dataset [19], we model the background using a time-
conditioned NeRF defined on the surface of the cylinder
fully covering the scene and the human model with Neu-
ralBody [11]. We jointly optimize these models for 400k
iterations using 2 NVIDIA RTX4090 GPUs which takes
approximately 70 hours per scene. The remaining settings
are the same as the original paper [15]. When we render the
scene for evaluation, we discard the background and only
render the human model.
InstantAvatar [4] reconstructs a single person from monoc-
ular video input. Hence, we optimize it on each person sepa-
rately and merge them in the evaluation stage same as Hu-
manNeRF [17]. We train the InstantAvatar for 50 epochs
using a single RTX3090, following the default options used
to optimize PeopleSnapShot [1] in the original paper.

A.2. Ours Implementation Details

Background pre-optimization. We first optimize back-
ground Gaussians GBG with images that humans are masked
out. The background Gaussians GBG are initialized with
point cloud obtained by SfM [14] or SLAM [16]. In the
case of a fixed camera, we initialize Gaussians GBG with a
3D sphere whose radius is 30m, together with background
regularization loss to prevent it from occluding the people

as follows:

LBG
reg = λBG

reg

N∑
i=0

||µBG
i − 30||2 (1)

, where µBG
i is the center of i-th background Gaussian.

We scale the world’s unit distance to be 1m before starting
optimization. The background is optimized for 30k iterations
following the default 3D-GS [6] experiment settings.
Human background joint optimization. After the pre-
optimization of the background, we optimize human Gaus-
sians Gh

j j=1,...,N
and background Gaussians GBG together.

For the first 1.5k iteration of joint optimization, we fix
the center of human Gaussians µi on the initial points
xi,init and clamp the opacity oi below 0.9 to avoid the
body being transparent. We densify the human Gaussians in
[2000, 2500, 3000] iterations for detailed reconstruction and
prune Gaussians which are exceptionally large or transparent
every 500 iterations until the end of optimizations to reduce
artifacts. The background Gaussians are densified only dur-
ing pre-optimization stage and keep the same number of
Gaussians in the joint optimization stage.
Optimization Details. We use Adam [7] optimizer with
different learning rates for each component of 3D Gaussians.
For the center of Gaussian µ, we set an initial learning rate
as 1e−3 and decay it until 2e−6 during training. We use a
fixed learning rate 2.5e−3 for color c, 5e−2 for opacity o,
5e−3 for scale s, and 1e−3 for quaternion q. We set the loss
weight of SSIM loss λssim = 0.2, MSE loss λrgb = 0.8,
LPIPS loss λlpips = 0.1, and SDS loss λsds = 1.0. For hard
surface regularization loss, we set the weight of loss λhard

relative to reconstruction loss weight λrecon = 0.1× λrecon

to keep a balance of losses. We use a fixed reconstruction loss
weight λrecon = 1.0 before 1k iterations and then schedule
the weight after 1k iterations to balance the reconstruction
loss and SDS loss.
SDS loss details. We use a publicly available SD1.5 [13]
and OpenPose ControlNet [20] checkpoint for the SDS loss.
Similar to other methods using SDS [12], we use a high CFG
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scale of 50 to generate detailed texture on unseen parts. We
sample the noise time step τ of SDS loss from U [0.5, 0.98]
for the first 2k iterations and then smoothly anneal it into
U [0.02, 0.3] over following 2k iterations similar to the prior
work [21]. We also schedule the weight of reconstruction loss
λrecon with a maximum time step τmax on each iteration to
balance the reconstruction loss and SDS loss as follows:

λrecon = 106 × τ2max. (2)

We apply SDS loss from 1k iteration of the joint optimization.
For every single iteration of reconstruction loss, we apply
SDS loss on all humans who appeared in the scene.

We sample random unseen cameras for SDS loss from
the surface of a sphere with a radius of 2.2, centered on the
human pelvis. The azimuth φ and elevation ϑ of cameras
are drawn from φ ∼ U [−π, π] and ϑ ∼ U [−0.3π, 0.3π].
Additionally, we choose a view-augmented prompt [side,
front, back] based on the sampled azimuth φ and SMPL
global rotation. For the initial 3k iterations of optimization
with SDS loss, we mainly render the full body of posed
human Gaussians Gh

j (θj,t) and canonical human Gaussians
Gh
j (θc) for SDS loss. In the subsequent iterations, we also

randomly sample from zoomed-in views of the head, upper
body, and lower body together with the full body of the posed
human, and the full body of the canonical with a uniform
probability of 0.2. This two-stage random camera sampling
facilitates the detailed reconstruction of unseen parts and
head.

B. Dataset Preprocessing
B.1. Panoptic Dataset [5]

We trim the last round of the ultimatum 160422 sequence,
extracting 540 multi-view images of 6 individuals by sub-
sampling every 4 frames. Among the 31 HD cameras in the
Panoptic Dome, we specifically choose cameras 0, 3, 5, 8,
22, 24, and 25 for evaluation, while camera 16 serves as the
input. To simulate a challenging scenario, we intentionally
pick the input view camera that excludes the entrance of the
Panoptic Dome [5] where individuals enter one by one.

To acquire the SMPL parameters θt,j and βj of individu-
als, we optimize them by minimizing the distance between
3D SMPL joints and provided pseudo ground truth COCO
3D joints. Our optimization process incorporates pose prior,
angle shape regularization, and 3D joint error, as outlined
in [2]. We leverage SMPL joints and SAM [8] to obtain each
individual’s mask in the input frames. Initially, we arrange
individuals based on their depth which is calculated as the
distance between the pelvis of SMPL and the camera center.
Starting with the individual closest to the camera, we obtain
a mask by querying the projected SMPL joints which is not
occluded into SAM [8]. We assume the joints is occluded if
it’s projected on the masks of nearer people.

Figure 1. Ablation study for the classifier-free guidance scale.
We cropped out the black blurry artifacts near the feet due to lack of
space. We can check that a low CFG scale (a) generates a smooth
monotonic texture in unseen parts while a high CFG scale (b)
synthesizes and enhances wrinkles of clothing on both seen and
unseen parts (lower row), but also introduces more artifacts. (upper
row)

B.2. In-the-wild Videos

In handling in-the-wild videos, we categorize them into
two scenarios: static camera and moving camera. For the
camera moving cases, we employ DROID-SLAM [16] to
estimate the initial camera pose and Goel et al. [3] to track
people with regressing SMPL parameters. Subsequently, we
refine the estimated parameters by minimizing the reprojec-
tion error between estimated 2D body joints [18]. In cases
with a static camera, we skip the camera pose estimation
step.

C. Effect of Classifier-Free Guidance Scale
To explore the impact of changing the classifier-free

guidance (CFG) scale, we conduct an ablation study using
Hi4D [19] pair00-dance sequence. As illustrated in the
lower row of Fig. 1, a high CFG scale synthesizes detailed
unseen parts such as cloth wrinkles and uniform numbers,
while a low CFG scale produces a smooth, monotonic texture
without any wrinkles. Notably, a high CFG scale introduces
more artifacts such as green stains which are amplified by
the light reflected from the floor shown in the upper row
of Fig. 1. This study shows the importance of selecting a
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Figure 2. Overall Pipeline of Textual Inversion in our method
The orange part is what we optimize during textual inversion. V* in-
dicates textual inversion token <person-j> which is training tar-
get. As shown here, we use CustomDiffusion [9] together with Con-
trolNet [20] to obtain individuals’ inversion token <person-j>
and fine-tuned diffusion model ϕj .

proper CFG scale to reconstruct a detailed human avatar
with minimal artifacts.

D. Details of Textual Inversion
To obtain an individual’s text-token <person-j> and

specified fine-tuned diffusion, we run CustomDiffusion on
each individual’s observations with modifications as shown
in Fig. 2. We use OpenPose ControlNet [20] during Textual
Inversion to avoid possible overfitting on observed body
pose and camera pose. To obtain an individual’s text-token
<person-j> and specified fine-tuned diffusion, we first
randomly perturb the observed image and then estimate the
added noise of the perturbed image. By minimizing the MSE
loss between the added noise and the estimated noise, we
optimize the text-token and fine-tune the diffusion model.
As we use the latent diffusion model [13] here, the training
objective is as follows:

Ltextual = MSE(ϵϕ(zτ ;y, τ)− ϵ) (3)

, where zτ is a perturbed latent corresponding to perturbed
image in Fig. 2 and ϵ is the added noise. During optimization,
we randomly sample τ from τ ∼ U [0, 1].

We optimize textual token and fine-tune diffusion using
Adam [7] optimizer with learning rate 5e−6 and batch size 4
for 1000 iterations. To mitigate the situation where the text
token learns the background, we mask out the background
and randomly fill it with white or black color. We do not
use prior preservation loss here to overfit the text token on
observed images. The text-token <person-j> is queried
only in Diffusion U-Net and not queried in the ControlNet
module as shown in Fig. 2.

Figure 3. Ablation study of adding additional data during Tex-
tual Inversion. TI* means the textual inversion used in SDS loss is
trained with a single additional image of the frontal view. Both (a)
and (b) are optimized with train views and the only difference is in
the Textual Inversion.

E. Enhancing Identity with Additional Images
By employing additional image sources for the target

identity, if they are known in advance, we can enhance the
identity of the person with sparse observations. Specifically,
training the Textual Inversion (TI) with an extra face image
of the target person, assuming this information is available
beforehand, enables our method to produce results that more
closely resemble the target human, even in scenarios with
an extreme lack of frontal train views. We further show
such scenario in Fig. 3 (b), where training the TI with just
a single additional frontal image substantially improves the
resemblance of the outputs, compared to Fig. 3 (a). This
demonstrates the unique advantage of using textual inversion
for reconstruction, a method that is difficult to leverage using
only reconstruction loss.



Table 1. Table of notations.

Symbol Description

Index
i Gaussian index, i ∈ {1, . . . , N} in 3D Gaussian attributes
j Human index, in human Gaussians Gh

j and SMPL parameters θj,t, βj

t Time index, t ∈ {1, . . . , T} in SMPL pose parameters, input images
k Joint index, k ∈ {1, . . . , Njoint} in LBS skinning

Learnable Attributes of 3D Gaussians
µi ∈ R3 Center of i-th Gaussian
qi ∈ SO(3) Covariance Matrix’s Quaternion Component of i-th Gaussian
si ∈ R3 Covariance Matrix’s Scale Component of i-th Gaussian
ci ∈ R3 Color of i-th Gaussian
oi ∈ R Opacity of i-th Gaussian
Gi i-th Gaussian consists of {µi, qi, si, ci, oi}

Parameters of Diffusion Model
ϕ/ϕj Diffusion model / Diffusion model fine-tuned on j-th person
τ noise time-step of diffusion model τ ∈ [0, 1]
z0 Encoded latent of the queried RGB images on diffusion model
zτ Perturbed latent with noise time-step τ ∈ [0, 1]
ϵ Noise added to the latent
ϵϕ Noise estimated by diffusion model ϕ

Parameters of Human Deformation
θj,t ∈ R72 SMPL pose parameter of j-th Human in time t ∈ {1, . . . , T}
βj ∈ R10 SMPL shape parameter of j-th Human
θc ∈ R72 Canonical pose parameter shared for all humans

Rendered and Observed Images
Rt/It Rendered / Observed RGB image in time t ∈ {1, . . . , T}
Rh

v Rendered RGB image of a human with camera v
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