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Supplementary Material

In this supplementary document, we first discuss the po-
tential use of our method to build a universal hand prior
(Section S.1) and show the additional qualitative results
(Section S.2) of the experiments in the main paper. We
then report additional experimental comparisons between
parallel and cascaded generation approaches (Section S.3).
Lastly, we report the implementation details (Section S.4).

S.1. Future Work: Universal Hand Prior

Due to the generality of our method, the proposed prior can
be jointly trained with heterogeneous datasets to build a uni-
versal hand prior for all hand-related problems. Recall that
our method learns the decomposed hand distributions using
a single diffusion network via conditioning dropout. Since
our network training (Algorithm 1 in the main paper) in-
volves learning on both single-hand and two-hand training
examples to model pϕ(xr) and pϕ(xr|xl), respectively, we
can incorporate any existing single-hand datasets into the
training as well. Taking a step further, we can also simul-
taneously apply dropout to the object condition c to model
both object-conditional and unconditional (two-)hand dis-
tributions using a single diffusion network. Overall, our
learning method based on the distribution decomposition
along with conditioning dropout is naturally suited to build
a multi-task prior trained with heterogeneous datasets (i.e.,
a single hand only, a single hand with an object, two hands,
and two hands with an object).

While building a universal hand prior falls outside the
scope of this work, we perform a toy experiment to show-
case its possibility. We train our diffusion prior on two-hand
dataset (InterHand2.6M [8]) along with multiple single-
hand datasets [2, 19, 21, 22] and report the qualitative
examples of two-hand and single-hand synthesis in Fig-
ures S1a and S1b, respectively. Sampling from our prior
yields plausible single-hand and two-hand shapes. Impor-
tantly, this setting is shown to further boost the diversity of
two-hand interaction synthesis (from 3.59 to 4.39) by ex-
posing our prior to richer training examples. In Figure S1c,
we also show the generation examples that could not be
sampled using the prior trained on InterHand2.6M only. In
particular, we collect the generated samples that are false
positive with respect to the KNN manifold [13] modeled
by the prior trained on InterHand2.6M only. As shown in
the figure, these samples also model plausible two-hand
interactions. One current limitation is that this universal
prior does not necessarily improve the plausibility metric
(e.g., FID, KID, precision) scores compared to individually

trained priors. We hypothesize that existing datasets in each
target domain such as InterHand2.6M [8] captures only the
subset of the true distributions, and individual datasets share
very little with each other to bring synergy to the joint learn-
ing. We leave building a more synergistic universal prior for
future work.

(a) Two-hands sampled by our prior.

(b) Single-hands sampled by our prior.

(c) False positive samples with respect to the manifold [13] modeled by
the prior trained on InterHand2.6M [8] only.

Figure S1. Hands sampled by our prior trained on two-hand
dataset [8] and additional single-hand datasets [2, 19, 21, 22].



S.2. Additional Qualitative Results

S.2.1 Monocular Two-Hand Reconstruction

In Figure S2, we provide the qualitative comparison of our monocular two-hand reconstruction experiment in Section 4.3 in
the main paper. In the figure, brown boxes highlight areas where shape penetration occurs, and blue boxes denote regions with
inaccurate hand interaction (e.g., contact is absent where it should occur). While the baseline results of InterWild [7] contain
several examples with penetration or inaccurate hand interaction, our approach can generate more plausible reconstructions.
This indicates that leveraging our diffusion prior is effective in reducing ambiguity in an ill-posed monocular reconstruction
problem.
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Figure S2. Qualitative results of our monocular two-hand reconstruction experiment in Section 4.3. The top four rows show results
from the HIC dataset [17], while the bottom four rows show results from the InterHand2.6M dataset [8]. Brown boxes highlight areas
where shape penetration occurs, and blue boxes denote regions with inaccurate hand interaction (e.g., contact is absent where it should
occur). Utilizing our generative prior leads to more plausible reconstructions.



S.2.2 Two-Hand Interaction Synthesis

In Figure S3, we additionally show the qualitative comparison of two-hand interaction synthesis experiment in Section 4.1 in
the main paper. In the figure, brown boxes denote regions with implausible two-hand interaction (e.g., where penetration or
unnatural hand articulation occurs). Compared to the baselines, our method can produce more realistic two-hand interactions
with less penetration. Especially, our method is shown to plausibly generate complex and tight two-hand interactions, for
example, fingers of two hands crossing one another.
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Figure S3. Qualitative results of two-hand interaction synthesis experiment in Section 4.1. Brown boxes denote regions with implausi-
ble two-hand interaction (e.g., where penetration or unnatural hand articulation occurs). Our method can produce more plausible two-hand
interactions with less penetration.



S.2.3 Object-Conditioned Two-Hand Interaction Synthesis

In Figure S4, we also report the qualitative comparisons of object-conditional two-hand synthesis experiment in Section 4.2
in the main paper. Similar to the previous figures, brown boxes denote implausible regions with penetration or unnatural hand
articulation. Our approach consistently demonstrates its capability to generate more plausible two-hand interactions, that are
also closely adhering to the conditioning object.
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Figure S4. Qualitative results of two-hand interaction synthesis experiment in Section 4.2. Brown boxes denote implausible regions
with penetration or unnatural hand articulation. Our approach can generate more realistic bimanual interactions.



S.3. Parallel vs. Cascaded Generation

We additionally show the experimental comparisons be-
tween our cascaded generation approach and the parallel
two-human generation approach of ComMDM [14] mod-
ified for two-hand generation. Directly following [14], we
added the ComMDM communication block to two paral-
lel single-hand diffusion networks having shared parame-
ters. We increased the number of attention layers by one
to achieve better results, while the other hyperparameters
remain the same as in [14]. As shown in Tab. S1, our cas-
caded approach leads to better generation quality due to (1)
the reduced dimensionality of the generation target and (2)
the conditioning on clean (rather than noisy) instances of
another hand.

Table S1. Comparisons between the parallel and cascaded gen-
eration approaches.

Method FHID (↓) Precision (↑) Diversity (↑)

Parallel (ComMDM [14]) 2.19 0.75 2.68
Cascaded (Ours) 1.00 0.86 3.59

S.4. Implementation Details

We now report the implementation details for the repro-
ducibility of the proposed method. Note that we also plan
to publish our code after the review period.

S.4.1 Evaluation Protocol

Two-hand feature backbone. We modify PointNet++ [10]
to regress (1) two hand poses in axis-angle representation,
(2) relative root rotation in 6D rotation representation [20],
and (3) relative root translation given a two-hand shape rep-
resented as a point cloud. Our network architecture mainly
follows the architecture of the original PointNet++ encoder,
except for the output dimension of the last fully connected
layer modified to 108 (in order to match the concatenated
dimension of our estimation targets). We train our net-
work on InterHand2.6M [8] dataset for 200 epochs with a
batch size of 32. Other training details (e.g., learning rate,
batch size) remain unchanged from the original PointNet++
model. The test MPJPE of the resulting model is 1.49mm .
Object-conditional two-hand feature backbone. The net-
work architecture and training details are the same as those
of our two-hand feature backbone, except that the network
regresses (1) two-hand root rotations and translations in the
object-centric coordinate space (not the relative root trans-
formation between two hands) and that (2) the object feature
is additionally incorporated to estimate two-hand poses. In
particular, we use the PointNet++ [10] embedding mod-
ule in our object-conditional diffusion model (refer to Sec-
tion 3.6) to extract the object feature and feed it to the first

fully connected layer of our two-hand pose regression net-
work.
Evaluation metrics. We mainly follow the implementation
details of the existing human pose and motion generation
work [11, 16] for computing Fréchet Distance [3], Kernel
Distance [1], diversity [11, 16] and precision-recall [13].
One important difference is that we adapt our own two-
hand backbone network for feature extraction. For measur-
ing penetration volume, we first voxelize two hand meshes
with 1mm grids and count the number of voxels that are
occupied by both hands similar to HALO [5].

S.4.2 Network Training and Inference

Training. We train our diffusion network for 80 epochs
using an Adam optimizer with an initial learning rate of
2 × 10−4. We additionally use a learning rate scheduler
to decay the learning rate by 10% every 20 epochs. We set
the batch size as 256 and 64 for unconditional and object-
conditional diffusion networks, respectively. For diffusion
noise scheduling, we use linear scheduling from β1 = 10−4

to βT = 0.01 [4]. We set the maximum value of diffu-
sion time as T = 256 and the probability of conditioning
dropout as puncond = 0.5. Note that, for unconditional
two-hand synthesis, only the relative root transformation
between two hands is meaningful in modeling plausible in-
teractions. Thus, we supervise the root transformation of
the interacting hand generation (pϕ(xr|xl)) with the ground
truth transformation of xr relative to xl, while not imposing
supervision to the root transformation of the anchor hand
generation (pϕ(xr)). For object-conditional two-hand syn-
thesis, we supervise both generation cases with the ground
truth root transformations relative to the conditioning ob-
ject.
Inference. For network inference, we use DDIM [15] sam-
pling with 32 denoising steps. We set the classifier-free
guidance weight as wcfg = 0.1. For anti-penetration guid-
ance weight wpen , we use a multiplicative scheduling start-
ing from 4 at t = 0 with a rate of 0.9. This strategy is
adopted to avoid using a high weight for anti-penetration
guidance in the early stages of the denoising process, where
samples may still exhibit high levels of noise.
Mirroring transformation Γ [12]. We adopt the same mir-
roring transformation function Γ(·) used in MANO [12].
Γ(·) multiplies the input instance by the transformation ma-
trix T, which is defined as:

T =

−1 0 0
0 1 0
0 0 1

 . (1)

Note that, for MANO hand shapes represented as MANO
parameters, applying Γ(·) to the root rotation parameter is
sufficient, as the local hand deformations are also mirrored
along the MANO kinematic chain starting from the root



pose (please refer to [12] for more details on the MANO
model).

S.4.3 Network Architecture

Hand embedding. For embedding noisy right-hand pa-
rameter xt ∈ R64 and conditioning left-hand parameter
xl ∈ R64, we use two separate MLPs with the same net-
work architecture. Each MLP consists of two fully con-
nected layers, whose output feature dimensions are 2056
and 512, respectively. The first layer is followed by Swish
activation. We denote the resulting embeddings for xt and
xl by embxt

, embxl
∈ R512, respectively.

Diffusion time embedding. For embedding diffusion time
t ∈ N, we use Sinusoidal embedding in DDPM [4] to
extract a 512-dimensional feature. We then use an MLP
(whose architecture is the same as the MLP used for hand
embedding) to further extract the feature of t. We denote
the resulting embedding for t by embt ∈ R512.
Object embedding. For embedding the object point cloud
O, we use a PointNet++ [10]-based architecture. We mod-
ify the original PointNet++ encoder by dropping the last
layer and changing the final feature dimension from 256
to 512. Other implementation details remain unchanged
from [10]. We denote the resulting embedding for O by
embO ∈ R512.
Transformer encoder. We perform channel-wise concate-
nation of embxt

, embxl
, embt, and (optionally) embO to

consider each embedding as an input token to a transformer
encoder. For the architecture of the transformer encoder,
we use two self-attention blocks [18] with four attention
heads. Each head consists of two fully connected layers,
whose output feature dimensions are 2048 and 512, re-
spectively. Each layer is followed by Layer Normaliza-
tion, ReLU activation, and dropout with a rate of 0.1. Af-
ter the self-attention modules, we use one fully connected
layer to map the flattened output tokens into a global fea-
ture embglo ∈ R2056.
Output decoder. We use an MLP-based decoder to esti-
mate the clean hand parameter xr ∈ R64 from embglo . The
MLP consists of seven fully connected layers. The output
feature dimension of all layers is 2056, except for the last
layer whose output dimension is 64 to model the hand pa-
rameter. Each layer (except for the last layer) is followed
by ReLU activation. Note that we use skip connections for
all layers, in which the input feature is concatenated with
the condition embeddings (i.e., embxl

embt and optional
embO). In the odd-numbered layers, we additionally con-
catenate the noisy hand embedding embxt

to the input fea-
ture.

S.4.4 Baseline Comparisons

Two-hand synthesis. For VAE [23] and BUDDI [9], we use

the original network architectures with minor modifications
to obtain better generation results on InterHand2.6M [8]
dataset to perform fairer comparisons. For VAE, we empir-
ically observed that increasing the feature dimension (from
128 to 256) and the number of encoder layers (from 4 to
5) improves the performance. For BUDDI, we increased
the feature dimension of the self-attention blocks from 152
to 184 to obtain better generation results. For our method
variations, we use the same implementation details except
for the changes specified in Section 4.1.
Object-conditional two-hand synthesis. For BUDDI [9]
and our method variations, we incorporate the object feature
encoded by PointNet++ [10] as an additional token to the
transformer encoder in a similar manner to our method. For
VAE [23], we feed the object feature as an additional input
to the second layer of both the encoder and decoder, similar
to HALO [5]. For ContactGen [6], we extend the single-
hand contact map to a two-hand contact map and optimize
both hands accordingly.
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