Learning to Control Camera Exposure via Reinforcement Learning

Supplementary Material

1. Appendix

In this supplementary material, we provide

* Implementation and training details
¢ Further discussion of RL component design
* Discussion and future works

2. Implementation Details

Network Architecture. We adopt simple Multi-Layer
Perceptron (MLP) layers as our DRL agent architectures
(i.e., actor and critic). Tab. 1 shows the architecture detail
from the input to the output layers. Both actor and critic
networks consist of one input layer, two intermediate layers,
and one output layer. The dimensions of each network’s in-
put and output layers are determined by the dimensions of
state and action vectors. Given the state vector, the actor
network estimates next step actions (i.e., exposure time and
gain difference). The critic network receives a state and ac-
tion as input and estimates a g-value. This g-value is then
utilized in the soft actor-critic training process [2].

Training Settings. We use a machine equipped with a
Ryzen 5950x CPU and NVidia 3080Ti GPU for the agent
training. We use Adam optimizer [5] with an initial learn-
ing rate of 3-10~%. The agent is trained with a batch size of
256 for 500k timesteps in a light-controlled darkroom en-
vironment. We set a maximum exposure value of 100 ms
and a maximum gain of 40 dB for the control bound of the
machine vision camera. In the darkroom environment with
controlled LED lighting, the agent stores various exposure
transition sets in the replay buffer for each episode. The ac-
tor and critic networks are optimized using the transition
batches sampled from the buffer. The maximum episode
length is set to 200 steps. It usually takes about 20 seconds
per episode, including training and image acquisition time.
Also, the agent is validated every 2000 time steps. The total
training time usually takes 18 hours in these training condi-
tions. For the other hyperparameters, we follow the default
setting described in [2] and summarize them in Tab. 2.

Table 1. Network architectures details.

Layer Type Actor Critic

Linear (state_dim, 256) (state_dim + action_dim , 256)
Activation ReLLU ReLLU

Linear (256, 256) (256, 256)
Activation ReLU ReLU

Linear (256, 256) (256, 256)
Activation ReLU ReLU

Linear (256, 2-action_dim) (256, 1)

Light Controller

LED (Backside)

achine Vision
Camera

Figure 1. Light-controlled darkroom.

Light-controlled Darkroom. We build the darkroom
environment to freely control the lighting. Our aim is to
provide a various range of lighting conditions to the RL
agent, within a short training time compared to the real sun-
light condition. The darkroom environment is made with
aluminum profiles and black acrylic plates of 5 mm thick-
ness. Fig. 1 and Fig. 2 shows the constructed environment
and each component’s specification. We use a global shut-
ter machine vision camera from Teledyne FLIR, which
has a 3.2MP Sony IMX 265. For the light controller unit,
we built a program based on the STM32F446RE Necleo
board, which has a 180MHz ARM Cortex M4 CPU and a
flash memory of 512 kbytes. Our LED bar is based on the
WS2812B LEDs, which have 144 LEDs per meter. We use
two LED bars for the darkroom environment. The light con-
troller communicates with the RL gym environment located
on the RL server through serial communication.

Table 2. Hyperparamters for agent training.

Parameter Value
optimizer Adam [5]
learning rate 3-1074
discount () 0.99
replay buffer size 10°
target smoothing coefficient (7) 0.05
batch size 256
initial random steps 10000

* Flir Blackfly S, BFS-U3-31S4C-C

p\ s 2048 x 1536, 55fps

3.2MP, Sony IMX 265
¢ Global Shutter

Machine Vision
Camera

* STM32F446RE Nucleo

* ARM Cortex M4, 180MHz CPU
* 512 kbytes Flash memory

* Direct Memory Access (DMA)

* WS2812B Fully addressable LED
o « 144LEDs/m (288 LEDS installed)
Controllable o 5V, 3A (15W for 144 LEDs)
LED * 800kbps data transfer

Figure 2. Hardware specification used in the darkroom.

3. Design Philosophy for RL. Component

In this section, we describe the underlying philosophy of
designing the RL components for the exposure control task.

3.1. State Design

CNN Feature. Perhaps, a naive state designing is utiliz-
ing the CNN model to extract a feature map from the image
and use the feature map as a state. However, CNN-based
state design has three disadvantages. First, the extracted fea-
ture map has no clear relationship with the camera expo-
sure level. Usually, CNN backbones (e.g., ImageNet, VGG,
ResNet) are trained in a brightness-agnostic manner via
their data augmentation strategy. Therefore, the extracted
feature usually includes semantic information rather than
brightness information. Second, CNN brings additional do-
main gap problems in real-world inference. Third, the state
extraction with the CNN model is computationally heavy,
introduces additional learnable parameters, and requires
lots of system memory to store the image states in the re-
play buffer. As a result, CNN state brings undesirable prop-
erties for deep reinforcement learning, such as reducing re-
play buffer size, limiting sample diversity, increasing train-
ing time, generalization problems, and unclear representa-
tion of brightness.

Intensity Value. Therefore, instead of using the CNN
model, we utilize the averaged intensity values along the
x-axis. The primary purpose of auto-exposure control is to
ensure a proper image brightness level by adjusting cam-
era exposure settings. Therefore, image intensity is the pri-
mary cue and a straightforward and effective representation
for auto-exposure control. Also, we reduce the dimension
by averaging intensity value along the x-axis rather than

utilizing entire images to ensure high-level memory effi-
ciency with minimum computation burden. Lastly, we stack
1-dimensional averaged intensity values of 3 frames and
define the stacked intensity values as a state. We empiri-
cally found that frame stacking has a significant impact on
making better decisions. By stacking consecutive frames,
the agent is able to implicitly observe the lighting condition
change and camera exposure change over a short period.

3.2. Action Design

Discrete vs. Continuous Action Space. We initially con-
sidered designing the system to obtain quantized exposure
and gain values using a discrete action space. However, due
to the sensitive nature of the parameter optimization, which
often causes oscillation, it was difficult to fully account for
the changes even with a higher level of quantization. There-
fore, we formulate the auto exposure control problem as a
continuous action control task.

Absolute vs. Relative Action Range. We can consider
absolute and relative actions as output values. The former
indicates the agent estimate desired absolute action values
(i.e., absolute values of exposure time and gain, such as 10
ms, 4dB). The latter means the output is a relative differ-
ence in action values (i.e., =10ms, +2d B) Relative control
is more stable but has the disadvantage of slower conver-
gence. On the other hand, absolute control can reach the
desired value in one step but is more likely to be unstable.
In practice, we found that absolute control faced difficul-
ties in learning good policies. Therefore, we make the agent
estimate relative action for the exposure control task.

3.3. Reward Design

Designing reward functions is crucial in deep reinforce-
ment learning, as it determines the desired objective of the
learning process. In this context, we will briefly mention the
rationale behind the three reward functions presented in the
main text. A common desired goal for auto exposure control
is to acquire a high-quality image that has moderate bright-
ness, low-level noise, and sharp edge information. Also, the
convergence of the control process should be fast but stable.

Therefore, the proposed reward functions are designed
for these desired objectives. First, the mean reward term
Rnean helps to ensure that the image has a median bright-
ness. Instead of designing it linearly, we made it decrease
more steeply around the median by adding non-linearity
with p,, to maintain the center. The second flickering term
R s11 suppresses the image flickering effect caused by the
action’s vibration and ensures smooth exposure transition
while preserving image attributes. Lastly, the noise term
Rnoise reduces the overall image noise caused by exces-
sively high gain, encouraging a balanced control between
the exposure and gain parameters.

(d) Ours

(e) w/ Contrast&Tone (f) w/ Zero-DCE [1]

Figure 3. Impact of AE control on post-processing methods.

4. Discussion and Future Work

Camera AE vs. ISP. There are two main processes for
camera image processing: Automatic Exposure (AE) con-
trol and Image Signal Processing (ISP). AE control in-
cludes automatic gain, exposure, and aperture control as
well. The roles of AE control and ISP are quite different.
The former aims to get high-quality images while rapidly
adjusting exposure levels within hardware limitations. Af-
ter that, the latter enhances the quality of the acquired im-
age for its purpose by using various ISP tools, such as de-
mosaicking, deblurring, denoising, color space correction,
gamma correction, tone-mapping, HDR, and more. There-
fore, the AE control (hardware level) and ISP (software
level) are complementary rather than competitive relations.
As the former stage obtains a better quality image, the qual-
ity in the later stage improves. We evaluate our method by
combining conventional contrast enhancement & tone map-
ping method (i.e., photoshop) (e) and Zero-DCE [1] (f). As
shown in Fig. 3, the exposure control results highly affect
its final outputs ((b)vs(e), (c)vs(f)).

Sim2Real via Camera Simulator. From the perspective
of object, motion, and lighting diversity, a simulated camera
model could be beneficial to learning camera exposure con-
trol with deep reinforcement learning. Modern photorealis-
tic simulations, such as Unreal, Unity, and Blender, provide
similar quality images to the real world and support partial
functionality for auto-exposure control.

However, introducing simulation causes two domain gap
issues: the domain gap 1) between actual and simulated en-
vironments and 2) between simulated and real camera ac-
quisition models. The former issue leads to large perfor-
mance differences between the models trained on simulated
data and real data, as we can see in domain adaptation lit-
erature. For the latter issue, the simulated camera model

(b)

() (d)

Figure 4. Example image from Unreal-based camera simulator
[6]. (a) Interface overview, (b) Auto-Exposure, (c) Over-exposed,
(d) Under-exposed.

provides an incomplete image acquisition model. As shown
in Fig. 4-(c), when the camera captures the image with high
gain or ISO, the image must contain severe noise within the
image. However, the simulation doesn’t support this func-
tionality. Therefore, due to these issues, we decided to uti-
lize the darkroom environment to investigate the possibility
of deep reinforcement learning for automatic exposure con-
trol.

Future Work: DRL-AE in Simulation. Although the
simulation has some disadvantages, it has many advantages,
such as faster interaction speed, easy parallelization, and di-
verse controllable parameters. Therefore, in future work, we
also plan to study Sim2Real based camera exposure con-
trol and compare the Sim2Real model with the real-world
model trained with this paper’s method.

Future Work: Motion-aware AE Control. Considering
the motion blur is another future direction. As the proposed
darkroom environment has only a fixed target object, it is
difficult to consider motion blur that frequently happens in
the real world. In future work, we plan to extend the current
darkroom environment to make object motion, thus allow-
ing the agent to consider a motion blur for their exposure
parameter control.

Future Work: Various Reward Functions. In this pa-
per, the proposed reward design might be a primitive and
basic form for camera exposure control. However, it can be
easily extendable by incorporating modern image assess-
ment metrics [3, 4, 7]. Also, we can utilize human prefer-
ence, network inference results (e.g. detection confidence),
and the number of detected features as a reward function.

Future Work: Aperture Control. The machine vision
camera used in the experiment has a fixed aperture size,
which is not controllable with software. However, the aper-
ture is also one parameter that affects camera exposure level
and depth of field. Therefore, we plan to control aperture
size by using a mechanic aperture control module.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy,
Junhui Hou, Sam Kwong, and Runmin Cong. Zero-reference
deep curve estimation for low-light image enhancement. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1780-1789, 2020. 3

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Interna-
tional conference on machine learning, pages 1861-1870.
PMLR, 2018. 1

Bin Han, Yicheng Lin, Yan Dong, Hao Wang, Tao Zhang, and
Chengyuan Liang. Camera attributes control for visual odom-
etry with motion blur awareness. IEEE/ASME Transactions
on Mechatronics, 2023. 3

Joowan Kim, Younggun Cho, and Ayoung Kim. Proac-
tive camera attribute control using bayesian optimization for
illumination-resilient visual navigation. IEEE Transactions on
Robotics, 36(4):1256-1271, 2020. 3

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

Unreal Cast Ltd. Arch camera system. https://
www . unrealengine . com/marketplace/en-US/
product /arch—-cam-system—1ite, 2023. [Online].
3

Ukcheol Shin, Jinsun Park, Gyumin Shim, Francois Rameau,
and In So Kweon. Camera exposure control for robust robot
vision with noise-aware image quality assessment. In 2019
1IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1165-1172. IEEE, 2019. 3

https://www.unrealengine.com/marketplace/en-US/product/arch-cam-system-lite
https://www.unrealengine.com/marketplace/en-US/product/arch-cam-system-lite
https://www.unrealengine.com/marketplace/en-US/product/arch-cam-system-lite

	. Appendix
	. Implementation Details
	. Design Philosophy for RL Component
	. State Design
	. Action Design
	. Reward Design

	. Discussion and Future Work

