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A. Implementation Details
A.1. Network Architecture

Given an image I € R7*Wx3 and clicks from a user, we encode the clicks into the click map C* € R¥*W*2 for seg-
mentation round ¢, by representing each click with a fixed-size disk. We then concatenate the click map with the previous
probability map P~ € R¥*Wx1 and the modulated probability map P'~' € R¥>*W*1 making 4-channel input. Then,
depending on the segmentation backbone, we embed the image / and the 4-channel input into tensors of the same size,
respectively, through either patch embedding layers or convolution layers. These two tensors are element-wise summed and
conveyed into the backbone, thus yielding a backbone feature F& e RP/4xW/4xK We also concatenate I, P*~' and P*~!
and process them through convolution layers to yield a probability-related feature 75 e R /AxW/AXK Next, we concatenate
FL and FL and fuse them through convolution layers. Finally, the segmentation head takes the fused feature as input and
generates the current probability map P*. Thresholding P! yields the final segmentation mask Y .
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Figure S-1. Network architecture of the proposed MFP algorithm.

A.2. Training Details

For the ViT-B backbone, we initialize a plain ViT with MAE pretrained weights [4], as done in [10]. We train the network
for 55 epochs using an initial learning rate of 5 x 10~°. We reduce the learning rate by a factor of % in the 10th epoch.
For HRNet-18, we train the model for 130 epochs with an initial learning rate of 5 x 10~4. We reduce the learning rate by
a factor of %) in the 100th and 115th epochs, respectively. For ResNet-34, we train the model for 80 epochs with a learning
rate of 5 x 10~*. Table S-1 summarizes the training configurations.

Table S-1. Configurations for training network.

Backbone HxW K # of epochs Learning rate Batch size
ResNet-34 384x384 128 80 5x 1074 16
HRNet-18 320x480 270 130 5x 1074 16
ViT-B 448x448 256 55 5x 107° 8




B. Additional Comparison Results
B.1. Comparison of IoU Performances of Models Trained on COCO-LVIS

Due to limited space, in the main paper, we compare the IoU results of the models trained on SBD only. Here, we also
compare the models trained on the COCO+LVIS datasets [2, 9]. Figure S-2 shows the IoU ratios according to the number
of clicks. We also report the area under the curve (AUC) in the legends. The proposed algorithm again provides the highest
AUC scores on all four evaluation datasets.
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Figure S-2. Comparison of the mean IoU scores according to the number of clicks on the GrabCut[13], Berkeley[11], DAVIS[12], and
SBD[3] datasets. The models are trained on the COCO+LVIS datasets [2, 9]. The legend contains the AUC score for each algorithm.

B.2. Comparison of algorithms using the ViT-B Backbone Trained on COCO-LVIS

Table S-2 provides comparison results with algorithms using the same ViT-B backbone network, trained on the COCO+LVIS
datasets. Out of 12 NoC scores compared, MFP shows the best results in 8 tests. AdaptiveClick shows comparable results

to the proposed MFP. However, it requires 19.3M more parameters and 88.51G more FLOPs than MFP, when the same
backbone of ViT-B is used.

Table S-2. Comparison of the proposed MFP algorithm with conventional algorithms using the same ViT-B backbone. All algorithms are
trained on the COCO + LVIS datasets.

GrabCut Berkeley DAVIS SBD
Algorithm Backbone NoC85 NoC90 NoC95 NoC85 NoC90 NoC95 NoC85 NoC90 NoC95 NoC85 NoC90 NoC95
InterFormer [5] ViT-B 1.38 1.50 2.68 1.99 3.14 6.69 4.10 6.19 12.51 3.78 6.34 12.43
iCMFormer [7] ViT-B 1.42 1.52 - 1.40 1.86 - 3.40 5.06 - 3.29 5.30 -
AdaptiveClick [8] ViT-B 1.34 148 1.68 1.40 1.83 5.10 3.40 4.81 9.26 3.25 5.37 11.83
SimpleClick [10] ViT-B 1.38 148 1.80 1.36 1.97 5.05 3.66 5.06 10.04 343 5.62 11.92
MFP (Proposed) ViT-B 1.34 1.42 1.70 135 1.90 4.68 3.37 4.81 9.23 3.26 5.34 11.65




B.3. Qualitative Comparsions

Figures S-3 and S-4 compare the proposed algorithm with SimpleClick[10]. As mentioned in the main paper, we adopt the
automatic clicking strategy used in [1, 6, 14]. Hence, in the two algorithms, the clicks are placed at different locations.
However, for an even fairer comparison, we provide segmentation results for the cases in which the two algorithms get clicks

in as similar locations as possible. Also, the number of clicks in the proposed algorithm is either equal to or less than that in
SimpleClick.
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Figure S-3. Qualitative comparison of the proposed algorithm with SimpleClick [10]. Both algorithms are trained on COCO+LVIS.
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Figure S-4. Qualitative comparison of the proposed algorithm with SimpleClick [10]. Both algorithms are trained on COCO+LVIS.



C. More Experiments
C.1. Hyper-Parameters

The probability map modulation scheme has two hyper-parameters: [N and Ry,.«. In the main paper, we set N = 7 and
Rpmax = 100 for all our experiments. Here, we demonstrate how the hyper-parameters affect segmentation results. In this
test, we use ViT-B as the backbone and train the model on the SBD dataset [3].

Table S-3 compares the NoC scores at different N’s on the GrabCut, Berkeley, and DAVIS datasets, in which R,,x = 100.
Table S-4 compares the NoC scores at different R,,ax’s, in which N = 7. Also, Figure S-5 shows the IoU curves on the
DAVIS dataset. From Table S-3, Table S-4, and Figure S-5, we see that decent results are obtained at N = 7 and Ry, = 100.

Table S-3. The NoC scores of the proposed MFP algorithm according to N.

‘ GrabCut Berkeley DAVIS

N NoC85 NoC90 NoC95 NoC85 NoC90 NoC95 NoC85 NoC90 NoC95
5 1.42 1.50 2.26 1.51 2.31 6.58 4.38 5.69 12.01
7 1.38 1.48 1.92 1.39 2.17 6.18 3.92 5.32 11.27
9 1.38 1.46 2.04 1.48 2.33 6.12 4.03 5.44 11.66

Table S-4. The NoC scores of the proposed MFP algorithm according to Rmax.

GrabCut Berkeley DAVIS
Riax NoC85 NoC90 NoC95 NoC85 NoC90 NoC95 NoC85 NoC90 NoC95
75 1.36 1.50 1.92 1.40 2.24 5.90 4.14 5.36 11.19
100 1.38 1.48 1.92 1.39 2.17 6.18 3.92 5.32 11.27
125 1.38 1.44 1.98 1.43 2.25 6.00 3.91 5.35 11.64
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Figure S-5. The mean IoU performances according to the hyper-parameters N and Riax on the DAVIS dataset. Riuax = 100 in (a), while
N = Tin (b).



C.2. Modulation Schemes

RGB Distance vs. Probability Distance: In our modulation scheme, we assign different values of gamma according to how
far the pixel is from a given click. For early clicks, we adopted the probability-distance-based scheme. Table S-5 also shows
performances when the RGB distance is used instead for the modulation process. In the RGB-distance-based scheme, a pixel
is less modulated (i.e. a smaller gamma value is assigned) when its RGB value differs more from the RGB value of the click.
We see that using the probability-distance-based scheme achieves better NoC scores than the RGB-distance-based scheme.

Table S-5. Comparison of NoC scores using the RGB-distance-based modulation scheme with the probability-distance-based scheme.

) GrabCut Berkeley DAVIS
Modulation strategy  NoC85 NoC90 NoC95 NoC85 NoC90 NoC95 NoC85 NoC90 NoC95
RGB distance 136 144 208 146 237 622 395 546 1195

Probability distance 1.38 1.48 1.92 1.39 2.17 6.18 3.92 532 11.27

Modulation Functions: For the probability map modulation scheme, we use the method of gamma correction. However,
other functions can also be used for the modulation process. Figure S-6 illustrates two additional functions that could be used
for the modulation scheme. f; is not a smooth function, and f5 has a limited mapping range, thus they may cause undesirable
modulation. We hence found f5 (the gamma correction function) most suitable. Table S-6 shows how the different modulation
functions affect the performances. We employ ViT-B as the backbone and use the SBD dataset for training. Note that f3
generally shows the best performance.
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Figure S-6. Illustration of functions that could be used for the probability modulation process.

Table S-6. Comparison of NoC scores according to the modulation function used for the probability map modulation.

GrabCut Berkeley DAVIS
NoC85 NoC90 NoC95 NoC85 NoC90 NoC95 NoC85 NoC90 NoC95
fi 1.38 1.50 2.06 1.37 225 5.91 3.97 5.32 11.36
f2 1.42 1.56 2.00 1.42 2.28 6.07 4.00 5.38 11.90

f3 1.38 1.48 1.92 1.39 217 6.18 3.92 5.32 11.27
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